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Foreword

Vediec Mathematics by the late Sankaricirya (Bhirati Krsna
Tirtha) of Govardhana Pitha is a monumental work. In his deep-
layer explorations of eryptic Vedic mysteries relating specially to
their calculus of shorthand formulae and their neat and ready
application to practical problems, the late Sankaracarya shows
the rare combination of the probing insight and revealing intui-
tion of a Yogi with the analytic acumen and synthetic talent of a
mathematician. With the late Sankardcarya we belong to a race,
now fast becoming extinct, of die-hard believers who think that
the Vedas represent an inexhaustible mine of profound wisdom in
matters both spiritual and temporal; and that this store of wisdom
was not, as regards its assets of fundamental validity and value at
least, gathered by the laborious inductive and deductive methods
of ordinary systematic enquiry, but was a direct gift of revelation
to seers and sages who in their higher reaches of Yogic realization
were competent to receive it from a source, perfect and immacu-
Jate. But we admit, and the late Sankaricirya has also practically
admitted, that one cannot expect to convert or revert criticism,
much less carry conviction, by merely asserting one’s staunchest
beliefs. To meet these ends, one must be prepared to go the whole
length of testing and verification by accepted, accredited methods.
The late Sankaracarya has, by his comparative and critical study
of Vedie mathematics, made this essential requirement in Vedic
studies abundantly clear. So let us agree to gauge Vedic mysteries
not aswe gauge the far-off nebulae with the poet’s eyes or with
that of the scer, but with the alert, expert, scrutinizing eye of the
physical astronomer, if we may put it as that.

That there js a consolidated metaphysical background in the
Vedas of the objective sciences including mathematics as regards
their basic conceptions is a point that may be granted by a thinker
wheo has looked broadly and deeply into hoth the realms.
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In our paper recently published—"The Metaphysics of 1 hysics'
we attempted to look into the mysteries of ereative crierpones ;e
contained in the well-known cosmogenic Hymn (B X, 1905 winh
a view to unveiling the metaphysical background where both an.
cient wisdom and modern physics may mecet on a common hasis
of logical understanding, and compire notes, discovering, where
possible, points of significant or suggestive parallelism between
the two sets of coneepts, ancient and modern. That metaphysical
background inecludes mathematics also; because physics as ever
pursued is the application of mathematics to given or specified
space-time-cvent situations. There we examined tapas as a funda-
mental creative formula whereby the Absolute emerges into ths
realms of measures, variations, limits, frame-works and relations.
And this descent follows a logical order which seems to lend itself,
within a framework of conditions and specifications, to mathe-
matical analysis. Rdafri in the Hymn represents the Principle of
Limits, for example, Rtaiica Satyafica stand for Becoming (Calana-
kalana) and Reing (vartana-kalana) at a stage where limits or
conditions or conventions do not yet arise or apply.. The former
gives the unconditioned, unrestricted how or thus of cosmic pro-
cess, the latter, what or that of existence. Tapas, which corres-
ponds to Ardhamdtrd in Tantric symbolism, negotiates, in its role
specially of critical variation, between what is, ab initio, uncondi-
tioned and unrestricted, and what appears otherwise, as for
instance, in our own universe of logico-mathematical appreciation.

This is, necessarily, abstruse metaphysics, butit is, nevertheless,
the starting background of both physics and mathematics. Butfor
all practical purposes we must come down from mystic nebulaz to
the ferra firma of our actual apprehension and appreciation. That
is to say, we must descend to our own pragmatic levels of time-
space-event situations. Here we face actual problems, and one
must meet and deal with these squarely without evasion or mysti-
fication, The late Sankaricirya has done this masterly feat withan
adroitness that compels admiration.

It follows from the fundamental premises that the universe we
live in must have a basic mathematical structure, and consequent-
ly, to know & fact or obtain & result herein, to any required degree
of precision, one must obey the rule of mathematical measures
and relations. This, however, one may do consciously or el
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consciously, systenmatically or haphazardly. Even some specics of

i““"”_““"”‘“h are by instinct gifted mathematicians: for example,
the mgraiary bird which flies thousands of miles off from its nest
and atter a period, unerringly returns. Thisimplics asubconscious
mathematical talent that works wonders. We miay cite the case of
a horse who was a mathematical prodigy and could ‘tell’ the
result of a cube root (requiring 32 operations, according to M.
Materlink in his ‘Unknown Quest') in a twinkle of the eye. This
sounds like magic, but it is undeniable that the feat of mathe-
matics does sometimes assume a magical look. Man, undoubtedly,
has been given his share of this magical gift. And he can improve
upon it by practice and discipline, by Yoga and allied methods.
This is also undeniable. Lately, he has devised the ‘automatic
brain’ for complicated calculations of science, that look like
magic.

But apart from this ‘magic’, there is and has been, the ‘logic’
of mathematics also. Man works from instinct, talent, or even
genjus. But ordinarily he works as a logical entity requiring speci-
fied data or premises to start from, and more or less elaborate
steps of reasoning to arrive at a conclusion. This is his normal
process of induction and deduction. Here formulae (Satras) and
relations (e.g. equations) must obtain as in mathematics. The
magic and logic of mathematics in some cases get mixed up; but
it is sane to keep them apart. You can get a result by magic, but
when you are called upon to prove it, you must have recourse to
logic.

Even in this latter case, your logic, your formulae and applica-
tions may be cither simple and elegant or complicated and cum-
bersome. The former is the ideal to aim at. We have classical
instances of master mathematicians whose methods of analysis
and solution have been regarded as marvels of cogency, compact-
ness and elegance. Some have been ‘beautiful’ asa poem, e.g.
Lagrange's ‘Analytical Mechanics”.

The late $ankaricirya has claimed, and rightly we may think,
that the Vedic Sitras and their applications possess these virtues
to a degree of eminence that cannot e challenged. The n:-utst.:tlnd+
ing merit of his work lies in his actual proving of this contention.

Whether or not the Vedas be believed as repositories of perfect
wisdom, it is unguestionable that the Vedic race lived nof as
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merely pastoral folk possessing a half-or-quarter-developed ¢y,
ture and civilization. The Vedic seers were, again, notmere *navel.
pazers’ or ‘nose-tip-gazers’. They proved themselves adepts in all
levels and branches of knowledge, theoretical and practical, For
example, they had their varied objective science, both pure angd
applied.

Let us take a concrete illustration. Suppose in a time of drought
we require rains by artificial means. The modern scientist has hijs
own theory and art (or technique) for producing the result. The
old seer scientist had his both also, but different from these now
availing. He had his science and technique, called Yajfa, in which
Mantra, Yantra and other factors must co-operate with mathe-
matical determinateness and precision. For this purpose, he had
developed the six auxiliaries of the Vedas in each of which mathe-
matical skill and adroitness, occult or otherwise, play the decisive
role. The Siitras lay down the shortestand surest lines. The correct
mtonation of the Mantra, the correct configuration of the Yantra
(in the making of the Vedietc., e.g. the quadrature of a circle),
the correct time or astral conjugation factor, the correct thythms
etc., all had to be perfected so as to produce the desired result
effectively and adequately. Each of these required the calculus of
mathematics. The modern technician has his logarithmic tables
and mechanics” manuals; the old Yajiika had his Sirras. How
were the Sifras obtained—by magic or logic or both—is a vital
matter we do not discuss here. The late Sankaricarya has claimed
for them cogency, compactness and simplicity. This is an even
more vital point, and we think, he has reasonably made it good.

Varamnasi SWAMI PRATYAGATMANANDA SARASWATI
March 22, 1965 L



Contents

General Editor’s Note
Foreword

Conventional to Unconventionally Original

I INTRODUCTORY

1. My Beloved Gurudeva—Sriman Manjula Trivedi
2. Author’s Preface

A. A Descriptive Prefatory Note
B. Explanatory Exposition
C. Mustrative Samples

11 TExT

Sixteen Sifras and their Corollaries
Prolegomena

CHAPTERS

1.
2.
L

Actual Applications of the Vedic Siitras
Arithmetical Computations
Multiplication

Practical Application in ¢ Compound Multiplication”
Practice and Proportion in Compound Multiplication

. Division by the Nikhilam method
. Division by the Paravartya method

Argumental Division

Linking note (Recapitulation and Conclusion)
Factorisation (of Simple Quadratics)
Factorisation (of Harder Quadratics)
Factorisation of Cubics ete.

Page

X1
xvii

XXvil
XXXVIL
XXXVil

Al
xlv

xxiii

13
3%
48

35
63

Tl
81

B3
&7
&1



CIHAPTIRES

10.
11.
12,
13.
14,
15
16.

17.

18.
19.

20.
21.
22.
23.

24.

25.

26.
27.
28.
29.
30.
3l.
32.
33.
34.
33,
36.
37.
38.
39.
40.

Hiphest Comman [Factor

Simple [ quations (1irst PPrinciplies)
simple Equations (by Sianyam cle,)
Merger Type of Easy Simple Equal oy
Complex Mergers

Simultancous Simple Equations
Miscellancous (Simple) Equations
Quadratic Equations

Cubic Equations

Bi-quadratic Equations

Multiple Simultancous Equations
Simultancous Quadratic Equations
Factorisation and Differcntial Calculus
Partial Fractions

Integration by Partial Fractions

The Vedic Numerical Code

Recurring Decimals

Straight Division

Auxiliary Fractions

Divisibility and Simple Osculators
Divisibility and Complex Multiplex Osculators
Sum and Difference of Squares
Elementary Squaring, Cubing etc.
Straight Squaring

Vargamiila (Squarc Root)

Cube Roots of Exact Cubes

Cube Roots (General)

Pythagoras’ Theorem ctc.

Apollonius’ Theorem

Analytical Conics

Miscellaneous Matters
Recapitulation and Conclusion
Press Opinion

Pitze
o,
14
Y]
125
133
139
143
155
167
171
175
179
183
187
193
197
199
239
235
273
285
205
209
305
309
317
327
347
351
353

359
363
365



=k

Vedic Mathematics

OR SIXTEEN SIMPLE MATHEMATICAL FORMULAE
FROM THE VEDAS

SIXTEEN SUTRAS AND THEIR COROLLARIES

Satras

TETfaET g

Ekadhikena Pirvena (also
a corollary)

fafas Faasaw g9q:
Nikhilam Navatafcaramam
Dagatah

T fg T
Urdhva-tirvaghhyam
qYrEEd Ataid

Paravartya Yojayet

g+ qTFEaAH =g

gﬁﬂj’ﬂlﬁ Sdmyasamuccaye
(wraEer) Frmeag
(Anuriipye) Sanyamanyat
SR EERCEDIRTIEY

Sankalana-vyavakaland-
bliyam (also a corollary)

TR,
PEraJ;: dpiirandbhyam

1.

Sub-Siitras or Corollaries
AT =TT

Anuriipyena

fereay e
Sisyate Segasamjfal

AT ATa 0

Adyamadyenantya-maniye-
na

HA A TR T
Kevalaih Sapmkum Ghip-
yar

e

Vegtanam

TG AR
Yavadianam Tavadinam

qATEgd dEgAiSd 29 F

l’ﬁmgu.-mm Tavadinikrtya
Vargarica Yojayet
A TE s
Antyayordasake'pi



xXil Vedic Mathematics

SHtras
9. SAAFAATEATH
Calana-Kalandbhyam
10, RIEFCE |
Yavadiinam
11, sofezgafe:
Vyastisamastih

12, A9T99E & T
Sesanyankena Caramena

13, HiqTRaEAARa
Sopantyadvayamantyam

14, THegAT Q20
Ekanyiinena Piirvena

15, Tivraag==a:

Gupitasamuccayah

16, TOFTT=AT:
Gunakasamuccayah

[Vote: This list has been compiled from stray

text.—EDITOR]

Sub-Siitras or Corollaries
9. TEIART
Antyayoreva
10, gR=gfura:
Samuccayagunitah
11, FIGEATIATHTH
Lopanasthapanabhyam

12, @t
Vilokanam

13, aforaam==a: ag=agqIfa:
Gunitasamuccayah
Samuccayagunitah

references in the



TRE=E i ]
Prolegomena

In our ‘Descriptive, Prefatory Note on the Astounding Wonders
of Ancient Indian Vedic Mathematics’, we have again and again,
so often and at such great length and with such wealth of detail,
dwelt on the almost incredible simplicity of the Vedic Mathe-
matical Siifras (aphorisms or formulae) and the indescribable case
with which they can be understood, remembered and applicd
(even by little children) for the solution of the wrongly-believed-
to-be ‘difficult’ problems in the various branches of Mathematics
that we need not, at this point, traverse the same ground and
cover the same field once again here.

Suffice it, for our present immediate purpose, to draw the
earnest attention of every scientifically-inclined mind and re-
searchward-attuned intellect, to the remarkably extraordinary and
characteristic—nay, unigue fact that the Vedic system does not
academically countenance (or actually follow) any automatical or
mechanical rule even in respect of the correct sequence or order
to be observed with regard to the various subjects dealt with in
the various branches of Mathematics (pure and applied) but leaves
it entirely to the convenience and the inclination, the option, the
temperamental predilection and even the individual idiosyncracy
of the teachers and even the students themselves as to what parti-
cular order or sequence they should actually adopt and follow!

This manifestly out-of-the-common procedure must doubtless
have been due to some special kind of historical background,
background which made such a consequence not only natural but
also inevitable under the circumstances in question.

Immemorial tradition has it and historical research confirms
the orthodox belief that the sages, seers and saints of ancient India
who are accredited with having observed, studied and meditated
in the Aranya (i.e. in forest-solicitude)—on physical nature around
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them and deduced their grand Vedantic Philosophy therefrom as

the result not only of their theoretical reasonings but also of what

may be more fittingly described as True Realisation by means of
Actual Visualisation scem to have similarly observed, studied and

meditated on the mysterious workings of numbers, figures cte. of
the mathematical world (to wit, Nature) around them and deduc-
ed their Mathemarical Philosopihy therefrom by & similar process
of what one may, equally correctly, describe as processes of True-
Realisation by means of Actual Visualisation.

And, consequently, it naturally follows that, inasmuch as, un-
like human beings who have their own personal prejudices, partia-
lities, hatreds and other such subjective factors distorting their
visions, warping their judgements and thereby contributing to
their inconsistent or self-contradictory decisions and discrimi-
natory attitudes. conducts etc. numbers in Mathematics labour
under no such handicaps and disadvantages based on personal
prejudices, partialities, hatreds etc. They are, on the contrary,
strictly and purely impersonal and objective intheir behaviour
etc., follow the same rules uniformly, consistenly and invariably
with no question of outlook, approach, personal psychology etc.
involved therein and are therefore absolutely reliable and depend-
able.

This seems to have been the real historical reason why, barring
a few unavoidable exceptions in the shape of elementary, basic
and fundamental first principles (of a preliminary or prerequisite
character), almost all the subjects dealt with in the wvarious
branches of Vedic Mathematics are explicable and expoundable
on the basis of those very *basic principles’ or “first principles’,
with the natural consequence that no particular subject or subjects
(or chapter or chapters) need necessarily precede or follow some
other particular subject or subjects (or chapter or chapters).

Nevertheless, it is also undeniable that, although any particular
sequence is quite possible, permissible and feasible, yet, some
particular sequence will actually have to be adopted by a teacher
(and, much more, therefore, by an author). And so, we find that
subjects like analytical conics and even calculus differential and
integral (which is usually the bugbear and terror of even the
advanced students of mathematics under the present system all
the world over) are found to figure and fit in at a very early stage
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in our Vedic Mathematics because of their being expounded and
worked out on basic first principles. And they help thereby to
facilitate mathematical study especially for the children.

And, with our more-than-half-a-century’s actual personal ex-
perience of the very young mathematics-students and their diffi-
culties, we have found the Vedic sequence of subjects and chap-
ters the most suitable for our purpose, namely, the climinating
from the children’s minds of all fear and hatred of mathematics
and the implanting therein of a positive feeling of exuberant love
and enjoyment thereof! And we fervently hope and trust that
other teachers too will have a similar experience and will find us
justified in our ambitious description of this volume as “Mathe-
matics without tears™,

From the hereinabove described historical background to our
Vedic Mathematics, it is also obvious that, being based on basic
and fundamental principles, this system of mathematical study
cannot possibly come into conflict with any other branch, depart-
ment or instrument of science and scientific education. In fact,
this is the exact reason why all other sciences have different Theo-
ries to propound but Mathematics has only theorems to expound!

And, above all, we have our Scriptures categorically laying
down the wholesome dictum:

gfsaaad a=1 yr@ awrEfo aeRfT

Ffaagid auEArsy IErafq FFET I
i.e. whatever is consistent with right reasoning should be accept-
ed, even though it comes from a boy or even from a parrot; and
whatever is inconsistent therewith ought to be rejected, although
emanating from an old man or even from the great sage Shree
Shuka himsell.

In other words, we are called upon to enter on such a scientific
quest as this, by divesting our minds of all pre-conceived notions,
keeping our minds cver open and, in all humility (as humility
alone behoves and befits the real sceker after truth), welcoming
the light of knowledge from whatever direction it may be forth-
coming. Nay, our scriptures go so far as to inculcate that even
their expositions should be locked upon by us not as “teachings
or even as advice, guidance etc. but as acts of “thinking aloud
by a fellow student.
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It is in this spirit and from this view-point that we nov addresy,
ourselves to the task belore us, in this serics of volumes® (ie. »
sincere exposition of the mathematical Sitras under discussion,
with what we may call our srunning comments™ Just a5 in a
blackboard demonstration or & magic lantern lecture or a cricket
match ete.

In conclusion, we appeal to our readers (as we always, appeal
to our hearers) to respond hereto from the same standpoint and
in the same spirit as we have just hercinabove described.

We may also add that, inasmuch as we have since long promis-
ed to make these volumes? “self-contained”, we shall make our
explanations and expositions as full and clear as possible. Brevity
may be the soul of wit; but certainly not at the expense of clarity
(and especially in mathematical treatises like thesc).

I 24 JF 9 10

1 and 2. Unfortunately, only one volume has been left over by His Holiness.

= g,



My Beloved Gurudeva

SRI BHARATI KRSNA TIRTHA

“]‘L the lines that nt_ic:w the writer gives a short biographical sketch of the illus-
trious author of Vedic Mathemalics and a short account of the genesis of his work
based on intimate personal knowledge, —Enrmor)

Very lew persons can there be amongst the cultured people of India
who have not heard about HIS HOLINESS JAGADGURU SANKARA-
CARYA 5RI BHARATI KRSNA TIRTHAJ MAHARAJA the magnificent
and divine personality that gracefully adorned the famous
Govardhan Math, Puri, his vast and versatile learning, his spiritual
and educational attainments, his wonderful research achievements
in the field of Vedic Mathematics and his consecration of all these
qualifications to the service of humanity as such.

His Holiness, better known among his disciples by the beloved
name *Jagadguruji’ or ‘Gurudeva’.was born of highly learned and
pious parents in March, 1884. His father, late Sri P. Narasimha
Shastri, was then in service as a Tahsildar at Tinnivelly (Madras
Presidency) who later retired as a Deputy Collector. His uncle,
late Sri Chandrashekhar Shastri, was the Principal of the Maha-
raja's College, Vizianagaram and his great-grandfather was late
Justice C. Ranganath Shastri of the Madras High Court.

Jagadguruji, named as Venkatraman in his early days, was an
exceptionally brilliant student and invariably won the first place
in all the subjects in all the classes throughout his educational
career. During his school days, he was a student of National
College, Trichanapalli; Church Missionary Society College, Tinni-
velli and Hindu College, Tinnivelli. He passed his matriculation
examination from the Madras University in January, 1899, top-

ping the list as usual.
Ilc was cxtraordinarily proficient in Sanskrit and oratory and
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or aceount of this he was awarded the title of ‘Saraswati’ by the
Madras Sanskrit Assocjation in July, 1899 when he was still in his
16th year. One cannot fail to mention at this stage the F‘"Dfﬂ'“ﬂﬁ[
impression left on him by his Sanskrit Guru 511 Yedam Venkatrai
Shastri whom Jagadguruji always remembered with decpest love,
reverence and gratitude, with tears in his cycs. ;g :

After winning the highest placein the B.A. Examination, Sri
Venkatraman Saraswati appeared at the M.A. Examination of
the American College of Sciences, Rochester, New York, from
Bombay Centre in 1903; and in 1904 at the age of just twenty he
passed M.A. Examination in seven subjects simultaneously secur-
ing the highest honours in all, whichis perhaps the all-time world-
record of academic brilliance. His subjects included Sanskrit,
Philosophy, English, Mathematics, History and Science.

As a student Venkatraman was marked for his splendid brilli-
ance, superb retentive memory and ever-insatiable curiosity. He
would deluge his teachers with myriads of piercing questions
which made them uneasy and forced them frequently to make a
frank confession of ignorance on their part. In this respect, he
was considered to be a terribly mischievous student.

Even from his University days Sri Venkatraman Saraswati had
started contributing learned articles on religion, philosophy,
sociology, history, politics, literature ete., to late W.T. Stead’s
“Review of Revicws” and he was specially interested in all the
branches of modern science. In fact study of the latest researches
and discoveries in modern science continued to be Sri Jagad-
guruji's hobby till his very last days.

Sri Venkatraman started his public life under the guidance of
late Hon'ble Sri Gopal Krishna Gokhale, C.IL.E. in 1905 in con-
nection with the MNational Education Movement and the South
African Indian issue. Although, however, on the one hand, Prof.
Venkatraman Saraswati had acquired an endless fund of learning
and his desire to learn ever more was still unquenchable and on
the Dth&rrhﬂnrd the urge for selfless service of humanity swayed his
];’Ii::-ltd mightily, yet the undoubtedly decpest attraction that
ok u!‘l::;ﬂsi:.fusam F.-1.l.-':1l‘1 ﬁ:I~t ﬂlwu.r. that towa rd.s the stur:-l y and prac-
S A{;hfllf_:': of Eﬁftntcs—rlht holy ancient Indian spiritual
RUIEnCE or Adiyatma-Vidyd. In 1908, therefore, he proceeded to
the Sringeri Math in Mysore to lay himself at the feet of the re-
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gl bt liprand e n shukaviechirya Muluan] Seb Sl -
g Spvabbaoevie Moisbmbn Bbdat] Swainl,

Bt D Duned not stayedd there Jomg, Betore Jue i 1o aesamme tha
(R ol the firs I'Ijlli'iﬂ:ll ul e neswly stanted Matonal ookl
R joatheneder wnder a pressing, and clapant eall of duty from the
matiomalisg Teadders, Prof, Venkateaman Saeaswati continoed there
Fowr theee yemes bt in 1911 e could not resist his oring desive
For spivitnal knowledpe, practice and attainment any more and,
theretore, tearing himsell ol suddenly from the suid collepe he
went back o Se Sateidinunda Sivabhinava Neisimba Bhdeat
Swami at Srinperd,

The next cight years he spent in the profoundest study ol the
most dvineed Vedanta Philosophy and praetice of the Bralima-
sadhana., During these days Prol. Venkatraman uscd o study
Vedintaat the feet of Sei Neisimha Blirati Swami, taupht Sanskrit
and Philosophy in schools there, and practise the highest and
most vigorous Yopa-sidhana in the nearby forests, Frequemly,
he was also invited by several institutions o deliver leclures on
philosophy; Tor example, he delivered o series of sixteen lectures
on Shankaracharya's Philosophy at Shankar Institute of Philo-
sophy, Amalner (Khandesh) and similar lectures at several other
places like Poona, Bombay cle.

After several years ol the most advanced studies, the decpest
meditation, and the highest spiritual attainment Proll. Venkatra-
man Saraswati was initiated into the holy order of Samnyidsa
Banaras (Varanasi) by his Holiness Jagadguru Shankaracharya
Sri Trivikrum Tirthaji Maharaj of Shiradapeeth on the 4th July
1919 and on this oceasion he was given the new name, Swami
Bharati Krsna Tirtha. .

This was the starting point ol an effulgent manifestation of
Swimiji's real greatness. Within two years of his stay in the holy
order, he proved his unique suitability for being installed on the
pontifical throne of Shirada Peetha Sankaricirya and according-
Iy in 1921, he was so installed with all the formal ceremonies
despite his  reluctance and active resistance. Immediately on
assuming the pontificate Sri Jupgadguruji started touring India
from corner to corner and delivering lectures on Sandtana Dharma
and by his scintillating intellectual brilliance, powerful oratory,
magnetic personality, sincerity of purpose, indomitable will, purity
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of thonpht, and lofiiness of character he took the entire intellec-
il and relipions elass of the nation by -"-l”['"”_i .

Jagadonrn Saikardciryasr Madhusidan Tirtha ol [mv:u:_dlmn

Math, Puri was at thisstape preatly impressed by Jagadguruji ﬂ"fj_-
when the former was in failing health he ruq.uus'.lml I;IL'.ijl}L!UTUJI
(o sueeeed him on Govardhan Math Gadi. Sr .I'u[::!.df,llrlljl conli-
ated 1o resist his importunate requests for a long time but iLl’]ﬂS[
when Japadguru St Madhusudan Tirtha's lu:ri.IlI} H':f:!-: T :i:.‘:rmu.s
tirn in 1925 he virtually foreed Japadguru HI:I Bhairat F'T!'Si.'l-i
Tirthaji 1o accept the Govardhan Miilhjﬁ Gadi and a_c{_:urdmg?'
Jagadpuruji installed Sri Swarupanandji on the Sh_amfiﬂpﬂfi 1
Gadi and himsell assumed the duties of the ceclesiastical and
pontifical head of Sri Govardhan Math, Puri.

In this capacity of Japadguru Sankaricirya of Govardhan
Math. Puri, he continued to disseminate the holy spiritual teach-
ings of Sanitana Dharma in their pristine purity all over the
world the rest of his life for 35 years. Month after month and
year after year he spent in teaching and preaching, talking and
lecturing, discussing and convincing millions of people all over
the country. He took upon himself the colossal task of the re-
natesance of Indian culture, spreading of Sandtana Dharma, re-
vival of the highest human and moral values and enkindling of
the loftiest spiritual enlightenment throughout the world and he
dedicated his whole life to this lofty and noble mission,

From his very carly days Jagadguruji was aware of the need for
the right interpretation of “Dhgrma” which he defined as “'the
sum total of all the means necessary for speedily making and
permanently Keeping all the people, individually as well as collee-
tively superlatively eomfortable, prosperous, happy, and joyous
in all respects (including the physical, mental, intellectual, educa-
tional, cconomie, social, political, psychie, spiritual cte. ad infini-
nan)”. He was painfully aware of the “escapism™ of some from
their dutics under the garb of spirituality and of the superficial
modern educational varnish of the others, divorced from spiritual
and moral standards. He, therelore, always laid great emphasis on
the necessity of harmonising the ‘spiritual’ and the “material’
spheres of daily life, He also wanted to remove the false ideas, on
the one hand, of those persons who think that Dharma can be
practised by exclusively individual spiritual Sadhani coupled with
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avont s o duringe this periad addressed rapt uudiunr:-:?.iqhund-
reils of collepes of universities, churches and other I'!UIE?'HL‘ institu-
Lions. 1l veas also invited to give tilks and mathematical d.tnm"'
arritions on the television. In fact, he I‘EIE-'.J.!:'.‘.d an exceptionally
power [l cnrrent of moral and spiritual EHI!EHWH'“L’IHL peace and
lrmony throughout Americd during his tour which proved g
phenomenil sueeess comparable perhaps :.-.'n:h thaE ﬂt: Swami
Vivekanandi only. A request was also n:r:i_:rt'r:d by ]tnm from Dr.
Hornday, the Minister for Church {:IFR{}IIgIU.LlE Science to open
o hrneh of $ri Vishwa Punarnirmana Sangha in America 'l.l.'lt!':, a
view 10 establish one religion all over the world. The i;uggr:s.tmn,
however. could not materialise at that time for certain reasons.
On his way back Jupadguruji gave some lectures in U.K. also and
retirned to India in May, 1958,

Guruji had been undergoing a terrific strain for more than five
decades in devoting his body, mind, heart and soul to the cause
of service of humanity, spreading of spiritual enlightenment and
revival of Vedintic ideals. This had already undermined his
health but still Guruji never devoted any attention to his personal
comforts. The excessive strain of the vast hurricane tour abroad
eanie as a severe blow to his health but still he refused to take rest
and incessantly continued to pursue his studies, talks, lectures and
writings with unabated and youthlike vigour and enthusiasm. In
fuct it required a great vigilance and heroic effort to prevent him
from giving ‘darshan’, advice and talks to his devotees and dis-
ciples even when he could hardly speak on account of strain. As a
result he fell seriously ill in November, 1959 and despite the best
available treatment shed off his mortal frame and took Mahi-
samidhi at Bombay on 2nd February, 1960.

From the very day of his assuming the throne of Jagadguru
Sankaricirya, Sri Bhirati Krsna Tirthaji had become the cyno-
sure of all eyes. His winning personality, his charming innocence.
his cager thirst for knowledge, his religious zeal, his carnest belief
in the “&stras™, his universal kindness, his retentive memory. all
these attracted towards him everyliving soul that came in contact
with him. People flocked to him in crowds and waited at his doors

For hours together justto peta glimpse of that divine countenance.
Tt v et W Smer Taanh T o fiogs o g B g T

LR T T . R Fa oozt
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nothing but the marvellous superhum
fowed from his heart,

He was always perfectly impartial, Every one was equal in his
cyes. He t::.lr::d not for riches. He cared not for position. Nothing
but Bhakti could attract people to him, rich or poor, high or low,
E‘:’cryhﬂd:ﬂ'md to go through the portals of Bhakti to approach
his august presence. Exhibiting his divinity, he loved as himself
everyone came to him. Everyone who had even two minute’s con-
versation with him went out with the full conviction that he was
the object of some spetial love of His Holiness.

Of such a divine personality it is impossible to draw a sketch.
His activities were many-sided. To hear him was a pleasure. To
sce him was a privilege. To speak to him was a real blessing and
to be granted a special interview—Ah! that was the acme of
happiness which people coveted most in all earnestness. The mag-
netic force of his wonderful personality was such that one word,
one smile, or even one look was quite enough to convert even the
most sceptic into his most ardent and obedient disciple. He be-
longed to all irrespective of caste or creed and he was a real Guru
to the whole world.

Pcople of all nationalitics, religions and climes. Brahmins and
non-Brahmins. Hindus and Mahomedans. Parsis and Christians,
Europeans and Americans received equal treatment at the hands
of His Holiness. That was the secret of the immense popularity of
this great Mahiatma.

He was erand in his simplicity. People would give anything and
everythi nghm get his blessings and he would talk yun:ls of 'I.'!.ff'ﬁdum
as freely without fear or favour. He was most easily accessible to
all. Thousands of people visited him and prayed for the relief of
their niseries. He had a kind word to say to cach, after attentively
listening to his or her tale of woe and then give T]'HIJ'I"I sOMe
prasad’ which would cure their malady whether physical or
mental. He would actually shed tears when he found people suffer-
ing and would pray to God to relieve their stllrcri|1g. .

He was mighty in his learning and voracious in his reading. A
sharp intellect. a retentive memory and a keen zest went to mark
him as the most distinguished scholur of his day. His leisure mo-
ments he would never spend in vain. Hewas always reading some-

an milk of kindness that
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thing or repeating something. There was no branch of kﬂﬂW]Eﬁgg
which he did not know and that also “§a@strically’. He was equally
learned in Chandahsastra, Ayurveda and Jyotish Sastra. He wag
a poet of uncommon merit and wrote a number of poems in
Sanskrit in the praise of his guru, gods and godesses with a
charming flow of Bhak!i so conspicuous in all his writings.

I have a collection of over three thousand §flokas forming part
of the various eulogistic poems composed by Gurudeva in adora-
tion of various Devas and Devis. These Slokas have been edited
and are being translated into Hindi. They are proposed to be
published in three volumes along with Hindi translation.

The book on “Sanitana Dharma"” by H.H. Swami Bharati
Krsna Tirtha Mahdrija has been published by Bharatiya Vidya
Bhavan, Bombay.

Above all, his Bhakti towards his Vidyiguru was something
beyond description. He would talk for days together about the
greatness of his Vidydguru. He would be never tired of worship-
ping the Guru. His Guru also was equally attached to him and
called our Swimiji as the own son of the Goddess of Learning,
Qri Sarada Everyday he would first worship his guru’s sandals.

His “Gurupaduki Stotra™ clearly indicates the qualities he attri-
buted to the sandals of his guru.

Sri Bharati Krsna Tirtha was a great Yogin and a “Siddha’ of
a very high order. Nothing was impossible for him. Above all he
was a true Samnyasin. He held the world but as a stage where
every one had to play a part. In short, he was undoubtedly a very
great Mahitma but without any display of mysteries or occultisms.

[ have not been able to gxpress here even one millionth part of
what I feel. His spotless holiness, his deep piety, his endless wis-
dom, his childlike peacefulness, sportiveness and innocence and
his universal affection are beyond all description. His Holiness
has left us a noble example of simplest living and highest thinking.

May all the world benefit by the example of a life so nobly and so
simply, so spiritually and so lovingly lived.

INTRODUCTORY REMARKS ON THE PRESENT VoLUME

I now proceed to give a short account of the genesis of the
work published here Revered Guruji used to say that he had
reconstructed the sixteen mathematical formulae (given in this
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text) from the Atharvaveda after assiduous research and “Tapas’
for about cight years in the forests surrounding Sringeri. Obvious-
ly these formulae are not to be found in the present recensions of
Atharvaveda; they were actually reconstructed, on the basis of:
intuitive revelation, from materials scattered here and there in the
Atharvaveda. Revered Gurudeva used to say that he had written
sixteen volumes on these Sa'm;ns, ong for each Sitra and that the
manuscripts of the said volumes were deposited at the house of one
of hisdisciples. Unfortunately, the said manuscripts were lost irre-
trievably from the place of their deposit and this colossal loss wis
finally confirmed in 1956, Revered Gurudeva was not much pertur-
bed over this irretrievable loss and usedto say that everything was
there in his memory and that he could re-write the 16 volumes!

My late husband Sri C. M. Trivedi, Hon. Gen. Secretary V.P.
Sangh noticed that while Sri Jagadguru Mahirij was busy
demonstrating before learned people and societies Vedic Mathe-
matics as discovered and propounded by him, some persons who
had grasped a smattering of the new Sirras had already started
to dazzle audiences as prodigies claiming occult powers without
knowledging indebtedness to the Sitras of Jagadguruji. My hus-
band, therefore, pleaded earnestly with Gurudeva and persuaded
him to arrange for the publication of the Siitras in his own name.

In 1957, when he had decided finally to undertake a tour of the
U.S.A. he re-wrote from memory the present volume, giving an
introductory account of the sixteen formulae reconstructed by
him. This volume was written in his old age within one month and
a half with his failing health and weak eyesight. He had planned
to write subsequent volumes, but his failing health (and cataract
developed' in both eyes) did not allow the fulfilment of his plans.
Now the present volume is the only work on Mathematies that
has been left over by Revered Guruji; all his other writings on
Vedic Mathematics have, alas, been lost for ever.

The typescript of the present volume was left over by Revered
Gurudeva in U.S.A. in 1958 for publication. He had been given
to understand that he would have to go to the U.S.A. for correc-
tion of proofs and personal supervision of printing. But his health
deteriorated after his return to India and finally the typescript was
bronght back from the U.S.A. after his attajnment of Mahi-
samadhi. in 1960
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Ao A DisCRIPTIVE PREFATORY NOTE ON THE ASTOUNDING
Waonnirs of ANCIENT INDIAN VEDIC MATHEMATICS

I. In the course of our discourses on manifold and multifarious
subjects (spiritual, metaphysical, philosophical, psychic, psycho-
logical, cthical, educational, scientific, mathematical, historical,
political, economic, social etc., from time to time and from
place to place during the last five decades and more, wehave been
repeatedly pointing out that the Vedas (the most ancient Indian
scriplurcs, nay, the oldest “Religious” scriptures of the whole
world) claim to deal with all branches of learning (spiritual and
temporal) and to give the earnest seeker after knowledge all the
tequisite instructions and guidance in full detail and on scienti-
fically—nay, mathematically—accurate lines in them'all and so on.

2. The very word **Veda' has this derivational meaning,i.e. the
fountain-head and illimitable store-house of all knowledge. This
derivation, in effect, means, connotes and implies that the Vedas
should contain within themselves all the knowledge needed by
mankind relating not only to the so-called ‘spiritual’ (or other-
worldly) matters but also to those usually described as purely
ssgecular”, “temporal”, or “wordly”; and also to the means re-
.quired by humanity as such for the achievement of all-round,
complete and perfect successin all conceivable directions andthat
there can be no adjectival or restrictive epithet calculated (or
tending) to limit that knowledge down in anysphere, any direction
or any respect whatsoever.

3. In other words, it connotes and implies that our ancient
Indian Vedic lore should be all-round, complete and perfect and
able to throw the fullest necessary light on all matters which any
aspiring secker after knowledge can possibly seek to be enlighten-
ed on.
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4. Ttis thus in the fitness of things that the Vedas include (i)
Ayurveda (anatomy, physiology, hygiene, sanitary science, medi-
cal science, surgery ele.) not for the purpose of achieving perfect
health and strength in the af ter-death Tuture but in order to attain
them fiere and now in our present ph}*ﬁit‘ill bodies; (1) Dhanurveda
(archery and other military sciences) not for fighting with one an-
other after our transportation to heaven but in order to quell and
subdue all invaders from abroad and all insurgents from withing
(iii) Gandharva Veda (the science and art of music); and (iv) Stha-
patva Veda (engineering, architecture etc.. and all branches of
mathematics in general). All these subjects, be it noted, are inhe-
rent parts of the Vedas, i.e. are reckoned as «spiritual” studies and
catered for as such therein.

5. Similar is the case with regard tothe Veddrngas (i.e. grammar,
prosody, astronomy, lexicography etc..) which, according to the
Indian cultural conceptions, are also inherent parts and subjects
of Vedic (i.e. Religious) study.

6. As a direct and unshirkable consequence of this analytical
and grammatical study of the real connotation and full implica-
tions of the word “Veda” and owing to various other historical
causes of a personal character (into details of which we need not
now enter), we have been from our very early childhood, most
earnestly and actively striving to study the Vedas critically from
this stand-point and to realise and prove to curselves (and to
ﬂiher:ff} the correctness (or otherwise) of the derivative meaning in
gquestion.

7. There were, too, certain personal historical reasons why in
our quest for the discovering of all learning in all its departments,
branches, sub-branches etc., in the Vedas, our gaze was riveted
mainly on ethics, psychology and metaphysics on the one hand
and on the “pnsitivc“ sciences and especially mathematics on the
other.

8. And the contemptuous or, at best patronising attitude adop-
ted by some so-called Qrientalists, Indologists, antiquarians, re.
gearch-scholars etc., who condemned, or light heartedly, g,
irresponsibly, f rivolously and flippantly dismissed, several apg.
truse-looking and recondite parts of the Vedas as “sheer.pg,
sense’’'—oOr @5 «infant-humanity's prattle”, and so on, merg),,

added fuel 10 the fire (so to speak) and further confirmed 5, d
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papers bepan to refer to us as “the Octopenarian Jagadgury
Sa nkaricirya who had taken Nagpur by storm with his Vedic
mathematics”, and so on!

13, Tt is manifestly impossible, in the course of a short nﬂttj{in
the nature of a “trailer”), to give a full, detailed, t]mlrﬂu[:h-ﬂﬂmﬁ.
comprehensive and exhaustive description of the uniqur:‘fcnturcg
and startling characteristics of all the mathematical lore in ques-
tion. This can and will be done in the subsequent Wium?a of this
serics (dealing serjatim and in extenso with ﬂ}l the various por-
tions of all the varjous branches of mathematics). _

14. We may, however, at this point, draw the carnest attention
of every one concerned to the following salient items thereof:

(f) The Sitras (aphorisms) apply to and cover each and every
part of cach and every chapter of cach and every branch of
mathematics (including arithmetic, algebra, Eﬂﬂl‘[{ﬂfﬁ’—lﬂﬂﬂe and
solid, trigonometry—plane and spherical, conics—geometrical
and analytical, astronomy, caleulus—ditferential and integral
ete.). In fact, there is no part of mathematics, pure or applied,
which is beyond their jurisdiction;

(ii} The Sitras are easy to understand, easy to apply and ecasy
to remember; and the whole work can be truthfully summarised
in one word “mental"!

(iif) Even as regards complex problems involving a good num-
ber of mathematical operations (consecutively or even simultane-
ously to be performed), the time taken by the Vedic method will
be a third, a fourth, a tenth or even a much smaller fraction of
the time required according to modern Western methods;

(iv) And, in some very important and striking cases, sums re-
quiring 30, 50, 100 or cven more numerous angd cumbersome
wgteps” of working (according to the current Western methods})
can be answered in a single and simple step of work by the Vedic
method! And children of even 10 or 12 years of apge merely look
at the sums written on the blackboard (on the pl:ﬂt‘urm}j:; d
jmmediately shout out and dictate the answerg from the p {{“n f
the convocation hall (or other venue of the demonstryg i
this is because, as a matter of fact, each digit “"mmat}c ?In) :"'Lrtcl

its predecessor and its successor! and the childrey, hn“-’uﬂ ¥ vields
go on tossing off (or recling off) the digits one afyer . eTcly to



Author's Preface xli

wirds or backwards) by mere mental arithmetic (without needing
pen or pencil, paper or slate ete.) !

() On secing this Kind of work actually being performed by
children, the doctors, professors and other “big-guns™ of mathe-
matics are wonder struck and exclaim: “lIs this mathematics or
magic” T And we invariably answer and say: It is both. It is
magic until vou nnderstand it; and it is mathematics thercafter™;
and then we proceed to substantiate and prove the correctness of
this reply of ours!

(1) As regards the time required by the students for mastering
the whole course of Vedic mathematics as applied to all its
branches, we need merely state from our actual experience that 8
months (or 12 months) at an average rate of 2 or 3 hours per day
should suffice for completing the whole course of mathematical
studies on these Vedic lines instead of 15 or 20 years required
according to the existing systems of the Indian and also of foreign
universities.

15. In this connection, it is a gratifying fact that unlike some
so-called Indologists (of the type hereinabove referred to) there
have been some great modern mathematicians and historians of
mathematics (like Prof. G.P. Halstead, Professor Ginsburg, Prof.
De Moregan, Prof. Hutton etc.,) who have, as truth-seekers and
truth-lovers, evinced a truly scientific attitude and frankly express-
ed their intense and whole-hearted appreciation of ancient India’s
grand and glorious contributions to the progress of mathematical
knowledge (in the Western hemisphere and elsewhere).

16. The following few excerpts from the published writings of
some universally acknowledged authorities in the domain of the
history of mathematics, will spzak eloquently for themselves:

(i) On page 20 of his book #On the Foundation and Technique
of Arithmetic”, we find Prof. G.P. Halstead saying *The impor-
tance of the creation of the zero mark can never be exaggerated.
This giving of airy nothing not merely a local habitation and a
name, a picture but helpful power is the characteristic of the
Hindu race whence it sprang. It is like coining the Nirvina into
dynamos. No single mathematical creation has been more potent
for the general on-go of intelligence and power™.
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(1) In this connection, in his splendid treal is¢ On ““The Present
mode of expressing numbers” (the ndian Historical Cuarterly,
Vol 3, pages 5330-540) B.B. Dutta savs: “The Hindus adopted
the decimal seale vary early. The numerical language of no other
nation is so scientific and has attained as higha state of perfection
as that of the ancient Hindus. In symbolism they succeeded with
len signs to express any number most clegantly and simply. It ig
this beauty of the Hindu numerical notation which attracted the
attention of all the civilised peoples of the world and charmed
them to adopt it", .

(iti) In this very context, Prof. Ginsburg says:

“The Hindu notation was carried to Arabia about 770 A.D. by a
Hindu scholar named Kanka who was invited from Ujjain to the
famous Court of Baghdad by the Abbaside Khalif Al-Mansur,
Karnka taught Hindu astronomy and mathematics to the Arabian
scholars: and, with his help. thev translated into Arabic the
Bralma-Sphuta-Siddhanta of Brahma Gupta. The recent discovery
by the French savant M.F. Nau proves that the Hindu numerals
were well-known and much appreciated in Syria about the middle
of the seventh century A.D.” (Ginsburg’s “New Light on our

numerals”™, Bullciin of the American Mathematical Society, Second
serics, Vol 25, pages 366-369).

(iv) On this point, we find B.B. Dutta further saying:

“From Arabia, the numerals slowly marched towards the West
through Egypt and Northern Arabia: and they finally entered
Europe in the eleventh century. The Europcans called them the
Arabic notations, because they received them from the Arabs
But the Arabs themselves, the Easternaswell as the Western, h .
unanimously called them the Hindu figures (Al-Argan-4]-f f:: rfrEle

17. The abave-cited passages are, however, jn connection with
and in appreciation of India’s invention of the «Zepg mark and
her Fﬂnlrrhutmm of the 7Tth century A, ang later 1o ark an
matical knowledge, O world mathe-

In the light, however, of the hereinabove pive :
cription of the unique merits and ch h detailed des-

aracteristic excellences of the
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still earlier Vedic Sqitras dealt with in the 16 volumes of this
serics,* the conscientious {truth-loving and truth-telling) historians
of Mathematics (of the lofty eminence of Prof. De Morgan ete.)
hive not been guilty of even the least exaggeration intheir candid
admission that “even the highest and farthest reaches of modern
Western mathematics have not vet brought the Western world
cven to the threshold of Ancient Indian Vedic Mathematics™.

I#. It 3s our earnest aim and aspiration, in these 16 volumes,*
to explain and expound the contents of the Vedic mathematical
Siitras and bring them within the easy intellectual reach of every
seeker after mathematical knowledge.

B. EXPLANATORY EXFOSITION OF SOME SALIENT, INSTRUCTIVE
AND INTERESTING ILLUSTRATIVE SPECIMENS BY WAY OF
CoMPARISON AND CONTRAST

Preliminary Note:

I. With regard to every subject dealt with in the Vedic Mathe-
matical Sitras, the rule generally holds good that the Sirras have
always provided for what may be termed the ‘General Casz’ by
means of simple processes which can be easily and readilv—nay,
instantaneously applied to any and every qusstion which can
possibly arfse under any particular headine.

2, But, at the same time, we often come across special cases
which, although classifizble undzr the generalheading in question,
yet present certain additional and typical characteristics which
render them still easier to solve. And, therefore, special provision
i5 found to have been mads for such special cases by means of
special Sarras, sub-Sifras, corollarizs ete., relating'and applicable
to those particular types alons.

3. And all that the student of thess Sgtras hasto dois to look
for the special characteristics in question, recognise the particular
type before him and determine and apply the special formula
prescribed thereforn

*Only one volume hos been begueathed by His Holfntes to posterity o
P xrxvin—Cgseral Eomron,
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4. And, penerally speaking it is only i case no special ease ig
involved, that the general formula has to be resorted to. And thig
process is naturally a little longer. But it nced hardly be pointeq
out that, even then, the longest of the methods according to the
Vedic system comes nowhere in respect of length, cumbrousnesg
and tediousness etc., near the corresponding process according to
the system now current everywhere. ‘

5. For instance, the conversion of a vulgar fraction (say vy or
& or 4 ete.,) to its equivalent recurring decimal shape involves
18 or 28 or 42 or more steps of cumbrous working (ﬂﬂcf?fdiﬂg to
the current system) but requires only one single and simple step
of mental working (according to the Vedic Sirras)!

6. This is not all. There are still other methods and processes
(in the latter system) whereby even that very small ("_Eﬂt“l} Wﬂ'{k‘
ing can be rendered shorter still! This and herein 1s the beatific
beauty of the whole scheme.

7. To start with, we should naturally have liked to begin this
explanatory and illustrative exposition with a few processes in
arithmetical computations relating to multiplications and divisions
of huge numbers by big multipliers and big divisors respectively
and then go on to other branches of mathematical calculation.

8. But, as we have just hereinabove referred to a particular but
wonderful type of mathematical work wherein 18, 28, 42 or even
more steps of working can be condensed into a single-step answer
which can be written down immediately by means of what we
have been describing as straight, single-line-mental arithmetic;
and, as this statement must naturally have aroused intense eager-
ness and curiosity in the minds of the students, and the teachers
too and especially as the process is based on elementary and basic
fundamental principles and requires no previous knowledge of
anything in the nature of an indispensable and inescapable pre-
“ql_ﬂ?itﬂ ﬂhﬂPt'?:T* subject and so on, we are beginning this ex-
position here with an easy explanation and a simple elucidation
of that particular illustrative specimen.

9. And then we shall take up the other varjous parts, one by
EEE,E c:; t:ll:-. various branches of mathematical computation and

E tow sufficient light thereon to enable the students to

mak{: their own comparison and contrast and arrive at correct
conciusions on all the variome matnfe danle - ol
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xly
C. ILLUSTRATIVE SAMPLES : COMPARISON AND CONTRAST
SPECIMENS OF ARITHMET ICAL COMPUTATIONS
I. Multiplication: The Sanskrit Siztra
} : (Formula) is:
(i) Multiply 87265 by 32117 I e fa e AT o)
By current method : By Vedic mental one-line method :
37265 87265
32117 32117
610855 2802690005
87265 =y
87265 Note: Only the answer 15 writ-
174530 ten automatically down
261795 by Ordhva Tiryak Sitra
(forwards or back-
2802690005 wards).
II. Division:
(2) Express 5% in its full recurring decimal shape (18 digits):
By the eurrent method: The Sanskrit Shtra
19)1.00(.65263157894736842 ] (Formula) is:
95 |1 werTfEET gE
S By the Vedic mental one-line
50 method:
38 (‘P}r the Ekddhila-Piirva Siitra).
_— (forwards or backwards), we
120 merely write down the 18-digit
114 ANSWer i —
60 052631578
57 047368421
30
19
110
]
150
133
170

152
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180
171
90 40
76 I8
140 20
133 19
70 1
57
130
114
160
152
80
76
40

Division continued:

Note: % gives 42 recurring decimal places in the answer but
these too are written down mechanically in the same way (back-
wards or forwards). And the same is the case with all such divi-
sions (whatever the number of digits may be):

(3) Divide 7031985 by 823 :

By the current By the mental Vedic
method: one-line method:
823)7031985(8544 823)70319(85
6584 675

4479 8544
4115 el

—

3648
3252

565
3292

e e

273
c 0 =8544
= 273
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(4) Divide .00034147 by 81425632 (to 6 decimal places)

The current method is notoriously too long, tedious, cumbrous
and clumsy and entails the expenditure of enormous time and
toil. Only the Vedic mental one-line method is given here. The
truth-loving student can work it out by the other method and
compare the two for himself.

8/1425632).00034147
) 3295

0000419. ..

(5) Find the Reciprocal of 7246041 te eleven Decimal places:
By the Vedic mental one-line-method.
(by the Ordhva-Tiryak Sitra)

7/246041).000001000000
374610

L00000013800 . ..

N.B.: The same method can be used for 200 or more places.
I1L. Divisibility

(6) Find out whether 5293240096 is divisible by 139:

By the current method, nothing less than complete division will

give a clue to the answer Yes or No.
But by the Vedic mental one-line method (by the Ekadhika-

Piirva Siitra), we can at once say:
for) 5 A T 2 400 9 6
139) 139 89 36 131' 29 131 19 51 93 S Yes

IV. Square Root:
(7) Extract the square root of 738915489

By the current method By the Vedic mental one-line
738915489(27183 method
4 4)738915489
— 33513674
47)338
329 27183.000 Ans.
541) 991 (By the Urdhva-Tiryak Siitra)

541
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5428) 45054
43424

e ——

54363) 163089
163059

[T R ——

0

2. The square root is 2718
(8) Extract the square root of 19.706412814 to 6 decimal plages,
The current method is too cumbrous and may be tricd by the
student himself,
The Vedic mental one-line method (by Urdhva-Tiryak Sitra) is
as follows:
8)19.706412814
351010151713
4.439190 ...

V. Cubing and Cube-Root: The Sanskrit Sitra
(Formula) ix
(9) Find the cube of 9989, 1\UTAgH TTEgATEd &0 o Ftwraq)
The current method is too cumbrous.
The Vedic mental one-line method by the Yavadinam-Tava-
diinam Sutra is as follows:
9989% =9967/0363/1331 =9967/0362/8669

(10) Extract the Cube-Root of 355045312441 :
The current method is too cumbrous.
The Vedic mental one-line method is as follows:

/355045312441 =7 . . 1=7081

STECIMENS FROM ALGEDRA

L. Sample Equations: The Sanskrit Siitra
T (Formula) is:
11 i i = o =4 |
(11) Solve: 2o K I armEge

By the current method: By the Vedic method by the

. unyam-Samuceaya Sitra

So Ox34- 1712 S Ax4-5=0 2 x=—1}
6x*4-13x+4-7

l‘l "1'.:'{ o - L S

do X =11
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dx4-21 . 5%—69 3x—5 =
(12) <73 T = 4 = =57 —-——ﬁ:__;l
The current method is too cumbrous.
The Vedic method simply says: 2x—9=0 », x= a3
13) ( = )a= =3
( x—7 x—9 5
The current method is horribly cumbrous.
The Vedic method simply says: 4x— 24 =0 x=65.
11. Quadratic-Equations (and Calculus) :
The same is the case here.
16x—3 2x—15

(1) TeHT = T 252"'
J
(15) X3 o e Wb, +;=;+S S, x=0 or =72

(16) Tx2—11x—7=0.

By Vedic method (by Calana-kalana Sitra) by Calculus For-
mula we say: 1d4x—11=44/317.

N.B.: BEvery quadratic can thus be broken down into two bino-
mial-factors. And the same principle can be utilised for cubic,
biquadratic, pentic etc., expressions.

111. Summation of Series:

The current methods are horribly cumbrous. The Vedic mental
one-line metheds are very simple and easy.

(17) P+ e+ =477

(18) & +1hatevatsuto—71018

SPECIMEN FROM GEOMETRY

(19) Pythagoras’ Theorem is constantly ra:quj_nzd in al} mathe-
matical work, but the proof of it is ultra-notorious for its cum-
brousness, clumsiness, etc. There are several Vedic pr:::ﬂfs thereof
(every one of them much simpler than Euclid’s). 1 give two of

them below:

x=1-or10/9

E, F, G and H are points A H D
on AB, BC, CD and DA such &
that AE = BF=CG = DH. Thus
ABCD is split up into the
squarc EFGH and 4 congruent A1\e
triangles. ] a
Their total area=h?--4x} X mn gLl c

—»(he+4x3mn)
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—h®+2mn
Bt the arca of ABCD is (m--n)
=m® - 2mn-nt
o WL 2mn=mE4-2mn--ne
= Rttt Q.E.D.

(20) Second Proof: -
Draw BD | to AC,
Then ABC, ADB and
BDC are similar.
ADB  AB* d BDE= BC* | :
ABC ~ AC:"C ABCT ACE
. ADBL+BDC AB*-BC* —
- N o T But ADB-+BDC=ABC
s AB2+BC?=AC2 Q.E.D.
Note: Apollonius Theorem, Ptolemy’s Theorem, etc., are all
similarly proved by very simple and easy methods.

SPECIMENS rroM ComMics AND CALCUTITS

(21) Equation of the straight line joining two poinis:
For finding the equation of the straight line passing through
two points (whose co-ordinates are given).

Say (9, 17) and (7, —2).
By the Current Method
Let the equation be y=mx+-c.
* 9m--c=17;and TmLc=-2
Solving this simultaneous-equation in m and c.
We have Zm=19; °, m=9} -, C=—068}
Substituting these values, we have y =9}x — 68}
S 2y=19x—137 »*, 19x—2y=1]37. But this method is cunl-

brous.
Second method using the formula y—y' = Jru___:.{ x — Xx')
Xk

&

is still more cumbrous (and confusing).

But the Vedic mental one-line method by the Sanskrit S#fré
(Formula), TX14%T T9d  (Pardvartya-Sitra) enables us 1°
write down the answer by a mere look at the given co-ordinates-



Autiveir s Preface I

(22) When dacs a general-equation represent two straight lines?
Say. 12x%4-Txy - 10y*4 13x 4. 45y — 35— 0
By the Current Method':

Prof. 5.L. I_mncy devotes about 15 lines (section 119, Ex. 1 on
page 97 of his “Elements of Co-ordinate Geometry™) to his
~+model’” solution of this problem as follows:

Herca= 12, he 7f2, b ——10, g—13/2. f -45/2 and ¢ =— 35.
. abc-i-2fgh— af*— bg*— ch* turns out to be zero.

4
12— 10) (= 35) + X8 Ii X 212 (%)E_{_m} (%)“

2
TH% 4095 . 1690 . 1715
—(— 35) (1 ] =4200 = ~ 6075 - < ended Ly
7500
— 1875 -+ -—4-———-(!

The equation represents two straight hines.
Solving it for x, we have:

. Ty13 (?}’-':—]3)2 10y*— 45y-1-35 (?}’-—]—13)3
! X = - | =

s o 3 12 3
23y—43 *°
- ( 24 )
. Ty+13  23y—4]
RS S
foxe 2T or L

* The two straight lines arc 3x--2y—7 and 4x — — 5y+35.
By the Vedic method, however, we at once apply the Adyam-
Gdvena Sitra and by merely looking at the quadratic write down

the answer:

Yes, and the straight lines are 3x— 2y = — 7 and 4x-1-3y - 3.

(23) Dealing with the same principle and adopting the same
procedure with regard to hyperbolas, conjugate hyperbolas an.ﬂ
asymptotes, in articles 324 and 325 on pages 293 and 294 of his
“Elements of Co-ordinate Geometry'* Prof. g.L. Loney devotes
41 lines to the problem and says:

As 3x2— Sxy—2y?-p5x—1y—28
hyperbola.

.0 is the equation to the given
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2 3 (=) o BN~ D=3 AN 0=2) (2 =c(—$p_q
S =l
. The equation to the asymptoles is 3x%— Sxy— 2y 5, Iy

2.0
and the cquation to the conjugate-hyperbola1s 3x%— SRy — 2yt
Sx+15v-—-16 0 '
By the Vedic method, however, we use the same Adyam-adyen,
Siitra and automatically write down the equation to the asymp.
totes and the equation to the conjugate-hyperbola.

The Vedic methods dre so simple that their very simplicity i
astounding, and, as Desmond Doig has aptly, remarked, it ;
difficult for any one to believe it until one actually sees it.

It will be our aim in this and the succeeding volumes* to bring
this long-hidden treasure-trove of mathematical knowledge
within easy reach of everyone who wishes to obtain it and benefit
by it.

April, 1958 SwWAMI BHARATI KrsnA TIRTHA
New York (U.8.A.) JAGADGURU SHANKARACHARYA
*This is the

only volume left by the author—FEpiron,



ONE

Actual Applications
of the Vedic Satras to Concrete
Mathematical Problems

A SPECTACULAR ILLUSTRATION

For the reasons just explained immediately hereinbefore let us
take the question of the conversion of vulgar fractions into their
equivalent decimal form.

FinsT EXAMPLE

Case 1 Let us first deal with the case of a fraction say 1/19
1/19  whose denominator ends in 9.

By THE CURRENT METHOD By THE VEDIC ONE-LINE MENTAL
METHOD

19)1.00(.05263135 ?E}
A. FIRST METHOD

05(94736842 1]

50 170 A=.052631578
38 152 Ik 111l
120 180 947368421
114 17 IR

60 90 160 B. SECOND METHOD

57 76 153 '
30 140 80 L =.0526313578/94736842]

19 [33 76 &L 1ty it
110 70 40 This is the whole working.

935 37 38 And the modus operandi Is.
150 130 20 Expl:ﬁncd in the next few

133 114 19 pages.
170 160 ]
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It is thus apparent that the 18-digit recurring-decimal answep
requires 18 steps of working according 1o the current sysicim byt
only one by the Yedic Method.

ExPLANATION

The relevant Shrra reads: TRriEFT 'E-f'“F (Lkadhikena Piirveya)
which, rendercd into English, simply says: By onc mor¢ than
the previous one™. Its application and modus operandi are as
follows: o :

(1) The last digit of the denominator in this, case bﬂt_"ﬁ | and
the previous one being 1, “one more than the previous one™
evidently means 2. ,

(i) And the preposition “by" (in the Siitra) indicates that the
arithmetical operation prescribed is either multiplication or
division. For, in the case of addition and subtraction, ro and
from respectively would have been the appropriate preposition
to use. But «by” is the preposition actually found used in the
Siitra. The inference is therefore obvious that either multiplica-
tion or division must be enjoined. And, as both the meanings
are perfectly correct and equally tenable according to grammar
and literary usage and as there is no reason—in or from the
text—for one cf the meanings being accepted and the other one
rejected, it further follows that both the processes are actually
meant. And, as a matter of fact, each of them actually serves the
purpose of the Sitra and fits right into it as we shall presently
show, in the immediately following explanation of the modus

operandi which enables us to arrive at the right answer by either
operation.

A. THE FirsT METHOD

The first method is by means of multiplication by 2 (which 1s
the “Ekadhika Piirva™, i.e. the number which is just one more
than the penultimate digit in this case).

Here, for reasons which will
know beforehand tliat the
1! For, the relevant rule he

become clear presently, we can
last digit of the answer is bound to be
reon (which we shall explain and ex-
pound at a later stage) stipulates that the product of the last

dioi _ ;
1git of the denominator and the last digit of the decimal equi-

valent of ‘act] i
of the fraction in question must invariably end in 9-
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Therefore, as the last digit of the denominator in this case is 9,
it automatically follows that the last digit of the decimal equiva-
lent is bound to be 1 (so that the product of the multiplicand
and the multiplier concerned may end in 9.

We, therefore, start with 1 as the last (Le. the right-hand-
most) digit of the answer and proceed feftward continuously
multiplying by 2 (which is the Ekadhika Pfirva, i.c. one more
than the penultimate digit of the denominator in this case) until
a repetition of the whole operation stares us in the facc and
intimates to us that we are dealing with a Recurring Decimal
and may therefore put up the usual recurring marks (dots) and
stop further multiplication-work.

Qur modus-operandi-chart is thus as follows:

(i) We putdown 1 as the right-hand most

digit 1
(i) We multiply that last digit 1 by 2 and

put the 2 down as the immediately preceding

digit 21
(#if) We multiply that 2 by 2 and put 4 down

as the next previous digit 421
(iv) We multiply that 4 by 2 and put it down,

thus 3421

(v) We multiply that 8 by 2 and get 16as the
product. But this has two digits. We therefore
put the § down immediately to the l_cf't of the 8
and keep the 1 on hand to be carried over to 68421
the left at the next step (as we always do in all |
multiplication ¢.g. of 69x 2= 138 and 50 on).

(v) We now multiply 6 by 2, gt 12 as t_lm
product, add thereto the 1 (kept 10 be carried
over from the right at the last step), get 13 as
the consolidated product, put the 3 down and
keep the 1 on hand for carrying over to the left

3421
at the next step. 36

1

(wii) We then multiply 3 by 2, add the one
carried over from the right one, gel 7 as the
consolidated product. But, as this 15 a single-
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digit number with nothing to carry over 10 the

left, we put it down as our nexl multiplicand. 736842

(viii-xviii) We [ollow this F'm‘?“:fj'-'rj: conti-
nually until we reach the 18th digit counting
leftwards from the right, when we ﬁn‘d that the
whole decimal has begun to repeat itself. We
therefore put up the usual recurring marks
(dots) on the first and the last digit ﬂ_f :Ehu
answer (for betokening that the whole u? it is 2
Recurring Decimal) and stop the multiplication

there.
Our chart now reads as follows:

A= 052631578947368421
1 1 1111/1 11

We thus find that this answer obtained by us with the aid of
our Vedic onc-line mental arithmetic is just exactly the same as
we obtained by the current method with its 18 steps of Division-
work,

In passing, we may also just mention that the current process

“not only takes 18 steps of working for getting the 18 digits of
the answer not to talk of the time, the energy, paper, ink etc.
consumed but also suffers under the additional and still more
serious handicap that, at each step, a probable *trial” digit of
the quotient has to be taken on trial for multiplying the divisor
which is sometimes found to have played on us the scurvy trick
of yielding a product larger than the dividend on hand and has
thus—after trial—to be discarded in favour of another “trial”
digit and so on. In the Vedic method just above propounded,
T o bt st ll o ved o
s bﬁ?nnf 1 Etr.:,, _;u;lﬂnu scope for any tricks, pranks and
numbers: and Fﬂl; mi:f 1_'31"?""3-1'{[ mlﬂllp]mat.; on of single-digt
e Eﬂmejthmu ; ltnu plier is not mr:rf:ly?. simple one trnut also
facilitat ghout each particular operation. All this lightens,
Htales and expedites the work and turns the study of mathe-
matics from a burden and a bore into a thi ppsis nd &
Joy for ever at any rate. a5 f a thing of beauty a

In this context, it mu ar as the children are concerned.

» Rmust also be ¢ ansparently clear that the
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long, tedious, cumbrous and clumsy methods of the current
system tend to afford greater and preater scope for the children’s
making mistakes (in the course of all the long multiplications,
subtractions etc. involved therein); and once one figure goes
wrong, the rest of the work must incvitably turn out to be an
utter waste of time, energy and so on and engender feelings of
fear, hatred and disgust in the children’s minds.

B. THE SECOND METHOD

As already indicated, the second method is of division (in-
stead of multiplication) by the self-same « Ekddhilba Parva®,
namely 2. And, as division is the exact opposite of multiplica-
tion, it stands to reason that the operation of division should
proceed, not from right to left (as in the case of multiplication
as expounded hereinbefore) but in the exactly opposite direction,
i.e. from left to right. And such is actually found to be the case.
Its application and modus eperandi arc as follows:

(i) Dividing 1 (the first digit of the dividend) by 2, we see the
quotient is zero and the remainder is 1. We, thercfore, set 0
down as the first digit of the quotient and prefix the remainder
1 to that very digit of the quotient (as a sort of reverse-proce-
dure to the carrying-to-the-left process used .in multiplication)

and thus obtain 10 as our next dividend. 11’.]

(if) Dividing this 10 by 2, we get 5 as the second digit of the
quotient; and, as there is no remainder to be prefixed thereto,

we take up that digit 5 itself as our next dividend. .1[} 5

(iif) So, the next quotient-digit is 2; and the remfaindf:r is 1.
We, therefore, put 2 down as the third digit of the quotient and
prefix the remainder 1 to that quotient-digit 2 and thus have 12

as our next dividend. .ll} 511

(iv) This gives us 6 as quotient-digit and zero as remainder.
So, we set 6 down as the fourth digit of the guotient; _andlf 45
there is no remainder to be prefixed thereto, We take 6 itself as

our next digit for division which gives the next quotient digit as
3 .0 51 26 311
: 1
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{v) That gives us 1 and 1 as guoticnt and remainder Tespect.
ively. We therefore put 1 down as the 6th quotient-digit, prefiy
the 1 thereto and have 11 as our next dividend. . 0526315

R S 5

(vi-xvif) Carrying this process of straight, continuous division
by 2, we get 2 as the 17th quoticnt-digit and 0 as remainder,

(xwiii) Dividing this 2 by 2, weget las . 052631578
18th quotient digitand 0 as remainder. 11 1111 }
But this is exactly what we began with. 94736842]
This means that the decimal begins to 1 11
repeat itself from here. So, we stop the
mental-division process and put down
the usual recurring symbols (dots) on the
Ist and 18th digit to show that the
whole of it is a circulating decimal.

Note that, in the first method i.e..of multiplication, each
surplus digit is earried over to the Jeft and that, in the second
method, i.e. of division, each remainder is prefixed to the right,
i.e. just immediately to the left of the next dividend digit.

C. A FURTHER SHORT-CUT

This is not all. As a matter of fact, even this much or rather,
this little work of mental multiplication or division is not really
necessary. This will be self-evident from sheer observation.

Let us put down the first 9 digits of the 052631578
answer in one horizontal row above and 94736847
the other 9 digits in another horizontal
row just below and observe the fun of it. 0690999999
We notice that each set of digits in the
upper row and the lower row totals 9. And this means that,
when just half the work has been completed by either of the
Fedic ane-line methods, the other half need nor be obtained by
the same process but is mechanically available to us by subtract-
ing from 9 each of the digits already obtained! Aud this means 4
reduction of the work still Surther by 50%7,

Yes, but how should one know that the task is exactly half-
ﬁ!'ui:::-i!ud so that one may stop the work of multiplication or
division, as the case may be and proceed to reel aff the remain-
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ing half of the answer by subtracting from 9 each of the dieits
already obtained? And the answer is—as we shall 15'3'11111!151.::"11{.:
I;':_t-:'r on—that, in either method, if and as soon as we reach Ih-:.
difference between the numerator and the denominator (e
19— 1:=18), we shall have completed exactly half the work; :1111.1.
with this knowledge, we know exactly when and where w::' nm:,:
stop the multiplication or division work and when and where we
can begin reeling off the complements from 9 as the remaining
digits of the answer!

Thus both in the multiplication method and in the division
method. we reach 18 when we have completed half the work and
can begin the mechanical-subtraction device for the other half.

Details of these principles and processes and other allicd
matters, we shall go into, in due course, at the proper place. In
the meantime, the student will find it both interesting and pro-
fitable to know this rule and turn it into good account from time
to time as the occasion may demand or justify.

SECOND ExAMPLE

Case 2 Let us now take another case of a similar typesay, 1/29
1/29 where too the denominator ends in 9.

By THE CURRENT METHOD

29)1.00(.0 3448275862068
87 9655172413793

130 180
116 174
T 140 60 150
116 58 145
240 200 50 110
232 174 9 87
B0 260 210 230
58 232 o3 Eﬂgﬂ
A0 R0 70 2
%ﬁg 261 58 i;ﬂ,
370 190 120
]112 174 116 _87
~350 160 40 30
232 145 AR I
180 rﬁﬁ' 110 1
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By 11t Vepic One-Line Muntan METHon
Ao TIRST METHOD

=, 034482758620638
1112 2121 222

0655172413793
111 2 1 122

B, SECONDY METHOD
2. 03448275862068
1112 21231 222

9655172413793 1
111 2 1 122

This is the whole working by both the processes. The pro-
cedures are explained hercunder:

A. ExprLanaTION OF THE FirsT METHOD

Here too, the last digit of the denominator is 9; but the
penultimate one is 2; and one more than that means 3. So, 3 is
our common—i.e. uniform—multiplicr this time. And, following
the same procedure as in the case of 1/19, we put down, 1 as the
last (i.e. the right-hand-most) digit of the answer and carry on
the multiplication continually leftward by 3 “carrying” the left-
hand extra side-digit—if any—over to the left until the recur-
ring decimal actually manifests itself as such. And we find that,
by our mental one-line process, we get the same 28 digit-answer
as we obtained by 28 steps of cumbrous and tedious working
according to the current system, as shown on the left-hand side
margin on the previous page.

Our modus-operandi-chart herein reads as follows:

ww=-03448275862068%"
1 11a 219 229

9655172413793 |
111 2 1 129

-

B. EXPLANATION OF THE SECOND METHOD

The division-process to be adopted here js exactly the samé
as in the case of 1/19; but the divisor jnstead of the multiplier 13
uniformly 3 all through. And the chart reads as follows:



Aetuwal Applications of the Vedie Sitras

Ve=.034482T7580620638
11 L2 A RE 222

o6S55172413793 ]
111 21 122

C. Tie COMPLEMENTS FROM NINE

Here too, we find that the two halves are all complements of

¢ach other from 9. So, this fits in too.

y=03448275862068
9655172413793

9999990990999 9

THiRD EXaAMPLE

Case 3 By THE CURRENT SYSTEM
1/49
49)1.00(020408163265306122448
08 9795901836734693877551
200
195
400
392
T80 120
49 o8
310 220
294 196
160 240 410
147 196 392
930 440 180 190
08 392 147 147
320 480 330 430
204 441 204 392
3¢ 390 360 380
245 343 343 343
50 2410 170 370
147 441 147 343
00 290 230 270
294 245 196 - . 24
. - 3.:]{] 250
O agw s,
Tio ~— 90 460 30

08 49 a4l

190

120 410

49
1
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By pine Vo O - MR eAL 8 NI AR
s e vitse oy e s now 5, e one

O pandtiphive op diviser L
pit, So Al (By multiplieation lefi.

more Hin the pennltinate
warrd Crom the ripht) by 5, we have

% ﬁ?HJHHJnJ?hSJHﬁIEJJJH
DTOEN I RIGTIIODIN 77551
3424 1I[.'i,1li".'3-|l4.1322
or 18 (By division rightward (rom the left) by 33
16GA26530G6122448
L G20408163265306122
SN0 A2 3 112244

|}'I,I{}:-;1}[H:Iiﬁ‘f?.-[ﬁ")ﬁﬂ??ﬁﬁi

Note AL this point, in all the three processes, we find that
we latve reiehied 48 the dilference between the numerator and the
denominator, This means that half the work of multiplication
or division, as the case may be has been completed and that we
may therefore stop that process ad may begin the casy and
mechanical process of oblaining the remaining digits of the
answer whose total nmber of digits is thus found to be 214-21
v d2, And yel, the remarkable thing is that the current system
fnkes 42 steps of claborate and cumbrous dividing with a
serics of multiplications and substractions and with the risk
of the filure of one or more “lrial digits” of the quotient
and so on while @ single, straight and conlinupus process—
of multiplication or division—by a single multiplicr or divisor
is quite cnough in the Vedic method,

The complements from nine are also there.

But this is not all. Qur readers will doubtless be surprised to
tearn—but il is Fact—that there are, in the Vedic system, still
simpler and easicr methods by which, without doing even the
casy work explained Iereinabove, we can put down digit after
digit of the answer, right from the very start to the very end.

_Hut. it Ihu:-'.r.:_thn:u examples of %, 4, and <& have been dealt
et ot ol o, W01 It cmernplnid gt
stisfuction of 3" B Y *‘1" i‘“ preliminary demonstration for ltl‘-

iR OL s eertaln, natural and  understandable, nay, per-
feetly justifinble lype of purely i ntellectual curiosity, we do not
PrOPOSC 10 Poditr il et Tt o B oa . s wy a4 alaC
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borale, comprehensive and exhaustive cxposition of the other
astounding processes found in the Vedie mathematical Sitras
on this particular subjeet, We shall hold them over to be dealt
with, ut their own appropriate place, in due course, in a later
chapler.

% O g



TWO

Arithmetical Computations

MULTIPLICATION
By *NixuiLAM' SUTRA

We now pass on to a systematic exposition of certain salient,
interesting, important and necessary formulae of theutmost value
and utility in connection with arithmetical calculations begin-
ning with the processes and methods described in the Vedic
mathematical Sirras.

At this point, it will not be out of place for us to repeat that
there is a general formula which is simple and easy and can be
applied to all cases: but there are also special cases—or rather,
types of cases—which are simpler still and which are, therefors,
first dealt with.

We may also draw the attention of all students and te:aﬂhe:ts
of mathematics to the well-known and universal fact that, In
respect of arithmetical multiplications, the usuz}l plje?.an?day
procedure everywhere in schools, colleges and universities is for
the children in the primary classes to betold to cram up—or et
by heart”—the multiplication-tables up to 16 times "ﬁ.’ 20 20
and so on. But, according to the Vedic system, the multiplication
tables are not really required above 5x35. And a _m:hnal-
going pupil who knows simple ad:i}iti_cm rami subtraction ﬁ{uf
single-digit numbers) and the muihplmaﬂnn-u_ibl:e up to five
times five, can improvise all the necessary mulilphr:;atu:rn:ta!ﬂ:ﬁ
for himself at any time and can himself do all the requisite
multiplications involving bigger multiplicands and ﬂ}ﬂmth"r
with the aid of the relevant simple Vedic formulae which ;1_1111131&
him to get at the required products, very easily and spee % Il;';
nay, practically, immediately. The Shitras are Very El{?ﬁr {;
once one understands them and the modus aparq;:dxlnvﬂlv;
therein for their practical application, the whole thing becom
a sort of child’s play and ceases to be a problem™.
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1. Let s firet taki Wi i vETY £asy Aried 'If-~:’1"-' 113'1"-1r.:1|?|-,
examplies o, the multiplication of sinple-digit. numbers abgye =
and see how this can be done without previous knowledpe of
the h'-,-:.".-.'l :;,1:E:i1*:;q_|tiut|1-: of 1he r|'.|I|rl:']ll:.'.l.1Iu-|4-rrﬁJ['.'.'n

The Sutes veads: Bpferef sppnespanf 2z (Nikhilan. Nuvatad.
¢aremem Dedatel) which, literally translated, means: *ali from
9 and the Tast from 107! We shall give a detailed explanation,
prese ptiy, of the meaning and applications of 'F_l.lr* eryprical.
-.'-:.'r‘.e‘.;.";‘ formula, But just now, we state and explain the aztyal

procedure, step by step.

Suppose we have to multiply 9 by 7. (1)
(i) We should take, as base for our caleulations, that G =]
power of 10 which is nearest 1o the numbers to be =3

multiplied. In this case 10 itself is that power; 6/

(i} Put the two numbers 9 and 7 above and below on the
left-hand side (as shown in the working alongside here on the
right-hand side margin);

(4i7) Subtract cach of them from the base (10) and write down
the remainders (1 and 3) on the nght-hand side with a coanect-
ing minus sign (=) between them, to show that the numbers to
be multiplied are both of them Iess than 10,

(iv) The product will have two parts, one on the left side and
onc on the right. A vertical dividing line may be drawn for the
purpose of demarcation of the two parts,

(¥) Now, the left-hand-side digit (of the answer) can be arrived
at in one of 4 ways:

(&) Subiract the base 10 from the sum of the given nums-
bers (9 and 7, i.e. 16). And put (16—10) i.e. 6, as the
left-band part of the answer, 9+T—=10=6

or (b) Subtract the sum of the two defici-

encies (1--3=4) from the base (10).

You get the same answer (6) again. 10-1-3=6
or {¢) Cross-subtract deficiency 3 on the

second row from the original nume-

ber 9 in the first row, And you find

that you lisve got (9— 3). l.e. 6 again. 9-3=6
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or (d) Cross-subtract in the converse way
(r.e. 1 from 7). And you get 6 again

a4s the left-hand side portion of the
required answer. T—1=6

Note: This availability of the same result in several easy
wilys Is i very common feature of the Vedicsystem and is of great
advantige and help to the student as it enables him to test and
verily the correetness of his answer, step by step.

(v} Now, vertieally multiply the two deficit figures (1 and 3),
The produet is 3. And this is the right-hand-side portion of the

ANSWLT. (1 9-=1
(wii) Thus 947 63, 7-3
G/3

This method holds good in all eases and is, therefore, capable
of infinite application. In fact, old historical traditions deseribe
this crogs-subtraction process as having been responsible for the
acceptance of the ¢ mark as the sign of multiplication,

(10 91
=3
fi']

As further illustrations of the same rule, note the following
examples:

9—1 9=1 9—1 9—1 §-2 §-2 §-2
9—] 8~2 -4 5-5 8§-2 7-3 6-4

81 72 5[4 45 64 56 48 4

!
WO L L

This proves the correctness of the formula. The algebraical

explanation for this is very simple:
(x—a) (x—b)=x (x—a—b)--ab.

A slight difference, however, is noticeable when the vertical
multiplication of the deficit digits (for cbtaining the right-hand-
side portion of the answer) yiclds a product consisting of more
than one digit. For example, if and when we have to multiply
6 by 7, and write it down as usual:

7-3
6—4
3/,2
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we notice that the required vertical multiplication (of 3 and 4
gives us the product 12 (which consists of 2 digits; but, as oup
base is 10 and the right-hand-most digit s obviously of units,
we are entitled only to one digit (on the r.g'f1t~hum1_mdc].

This difficulty, however, is easily surm::nuntu:l with the usua]
nmiltiplication rule that the surplus portion on tifm left should
always be “carried” over to the left. :I'Imrrfm'c., in the present
case, we keep the 2 of the 12 on the right hand side and ‘::arr_-,!'-r
the 1 over to the left and change the 3 into 4. We thus obtaiy
42 as the actual product of 7 and 6.

7-3
6—4
3/,2 = 4/2

A similar procedure will naturally be required in respect of

other similar multiplications:

g2 7-3 6—4 6—4
5% 5-5 6—4 5-5
3/,0= 4/0 2/,5=3/5 2/,6=3/6 1/,0=13/0

This rule of multiplication by means of cross-subtraction for
the left-hand portion and of vertical multiplication for the
right-hand half being an actual application of the absolute
algebraic identity : (x+a) (X+b)=x(x+a-+b)+-ab, can be extend-
ed further without any limitation. Thus, as regards numbers of
two digits each, we may notice the following examples:

N.B. The base now required is 100,

91-9 93-7 93-7 93-7 89—11 91—9 93—7
91-9 92-8 93-7 94-6 95— 5 096-—4 97-3

82/81  85/56 86/49 87/42 84/55 8736 902
92—-8 88—-12 78-22 88—12 56—44 67—33 25-75
B-2 98- 2 97— 3 96— 4 985_ 2 97— 3 99— |
016 86/24 7566  84/48 5488 6499 24|15

Nate I In all these Cascs, note that both the cross-subtrac

tions always give the s } :
portion of the answer). ame remainder (for the left-hand-sid®
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Nore 2: Here too, note that the vertical multiplication for the
right-hand side portion of the product My, in some cases yicld
a more-than-two-digit product; but, with 100 as our base we
can have only two digits on the right-hand side. We should iimrr.:-
fore adopt the same method as before (i.e. keep the permissible
two digits on the right-hand side and “‘carry” the surplus or extra
digit over to the left) as in the case of ordinary addition, com-
pound addition etc, Thus:

88 —12 88— 12 2575
88—12 21= 9 98— 2

76/,44=177/44  79/,08=80/08  23/,50=24/50

Note: Also, how the meaning of the Siitra comes out in all the
examples just above dealt with and tells us how to write down
immediately the deficit figures on the right-hand side. The rtule
is that all the other digits of the given original numhers are to be
subtracted from 9 but the last, i.e. the right hand-most one should
be deducted from 10. Thus, if 63 be the given number, the deficit
from the base is 37; and so on. This process helps us in the work
of ready on-sight subtraction and enables us to put the defi-
ciency down immediately.

A new point has now to be taken into consideration i.e. that,
just as the process of vertical multiplication may yield a larger
number of digits in the product than is permissible and this
contingency has been provided for, so, it may similarly yield a
product consisting of a smaller number of digits than we are
entitled to. What is the remedy ? Well, this contingency too has
been provided for. And the remedy is—as in the case of decimal
multiplications—merely the filling up of all such vacancies with
zerocs. Thus,

991 98-2 96-4 97-3
97-3 9-1 98-2 97-3

96/03 97102 94/08 94/09

With these 3 procedures for meeting the 3 possible contingen-
cies in question, i.e. of normal, abnormal and sub-normal num-
her of digits in the vertical-multiplication-products and with the
aid of the subhiraction-rule. i.e. of all the digits from 9 and the
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Iast one from 10, for writing down the amount of the dcﬁciency
from the base, we can extend this multiplication-rule to Num.
bers consisting of a larger number of digits, Thus :

BRE—-112 879—121 697 —303 598 — 402

998 — 002 999 — 001 997 — 003 Q08 — 002

886/224 878/121 694/909 596/804

088 —012  88B-—112 112 — 888
088 —012 991009 Q08— 2

976/144  879/,008 = 880/008 110/,776 = 1 11/776
988012  998—002 99970003

998002  997—003 99970003

086/024  995/006  9994/0009

99979 —00021 999999997 — 000000003
99999 — 00001 999999997 — 000000003

99978/00021  999999994/000000009

Yes, but, in all these cases, the multiplicand and the multi-
plier are just a little below a certain power of ten (taken as the
base). What about numbers which are above 117

And the answer is that the same procedure will hold good
there too, except that, instead of eross-subtracting, we shall have
to cross-add. And all the other rules regarding digit-surplus,
digit-deficit etc., will be exactly the same as before, Thus,

1242 1343 1141 16+6 1848 10848 111411
1141 1242 1545 1141 1141 10848 1099

132 15/6 16/5 17/6 19/8 116/64 12099

1646 1747 1848

124-2 1242 124-2

18/.2 =192 19/,4 =20/4  20'5 =21/6

18-+8 1949 100545 1016--16
188 1949 1009 1-9 1006--6

—

26/4=232/4  28/,1=36/1 1014/045 1022/096




Avithwvietfoal  Comptationy I

b pivesdangs, the plpehrsdoal peincipleinyolyved may he cxplained
ilh I'Ill”il'l.i"n:

(v Loy (x| by xlx--a |-B)-nb,

Vot il one of Hie sombers is above and the other is below
aprowed ol 1O (the Do dnken), what then ¢

Pl iawer b thid the plis and the mines will, on multiplica-
tisn, hehivye s they always do and produce & minus-product
skl thes ehphid -l presrtion ol by wertical multiplica-

Hon il thevelore have 1o be sultracted. A vinewlum miy be
waed For maddng this clear, Thus,

12-]-2 10 -4 10747 102-4-2
- 71 93 -7 08 ~2

(0F(--96 10551 104/76 100745 - 99/51 100/0% 9996

102626 1033-4-33
097 3 997 3
L2300~ 1022/922 10307653 ~ 1029/901
10006 |-6
9999 — |

LO005/0001 - 10004/9994

Neve: Mole that even the subtraction of the vinculum-portion
may be casily done with the aid of the Sitra under discussion
e, all from 9 and the last Trom 10,

MULTIMLES AND SUB-MULTIPLES

Yo, but, in all these cases, we find both the multiplicand and
the multiplicr, or at least one of them, very near the base taken
i each cane; and this pives us a small multiplier and thus rend-
ers the multiplication very easy, What about the multiplication
of two numbers, neither of which is near i convenicnt buse?

The needed solution for this purpose is furnished by 2 small
Wpasitra® (or sub-formulay which is so-called because of its
practically nxiomatic character,

This sub=giitra consists of only one word AT IR (Anurizp-
Jeaa) which !I:i'rnf;lf}-' meant “Proportionately™. In actunl appli-



20 Vedic Mathematics

cation, it connotes that, in all cases where there is a rationg]
ratio-wise relationship, the ratio should be taken into account
and should lead to a proportionate multiplication or division 5
the case may be.

In other words, when neither the multiplicand nor the mujy;.
plier is sufficiently near a convenient power of 10 which cap
suitably serve as a base, we can take a convenient multiple or
sub-multiple of a suitable base, as our “working base”, perform
the necessary operation with its aid and then multiply or divide
the result proportionately, i.e. in the same proportion as the
original base may bear to the working base actually used by us.
A concrete illustration will make the modus operandi clear.

Suppose we have to multiply 41 by 41. Both these numbers
are so far away from the base 100 that by our adopting that
as our actual base, we shall get 59 and 59 as the deficiency from
the base. And thus the consequent vertical multiplication of 59
by 59 would prove too cumbrous a process to be permissible
under the Vedic system and will be positively inadmissible.

We therefore, accept 100 merely as a theoretical base and
take sub-multiple 50 which is conveniently near 41 and 41 as our
working basis, work the sum up accordingly and then do the
proportionate multiplication or division, for getting the correct
answer.

Our chart will then take this shape:

100
—2-=50

(i) We take 50 as our working base. 41 -9
(ii) By cross-subtraction, we get 32 on 41-9

the left-hand side.
2)32/81

16/81

(iii) As 50isa half of 100, we therefore
divide 32 by 2 and put 16 down as the
real left-hand-side portion of the
answer.

(iv) The right-hand-side portion 81 remains
unaffected.
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(v) The answer thereforeis 1681.

0T,

ur,

secondfy, instead of taking 100 as our
theorctical base and its half 50 as our
working base and dividing 32 by 2, 10 5=50
we may take 10, as our theoretical

base and its multiple 50 as our working 41-9

basc and ultimately multiply 32 by 5 41-9

and get 160 for the left-hand side. And

as 10 was our theorstical base and we 32/.1

are therefore entitled to only one digit % 5f

on the right hand side, we retain | of

the 81 on the right hand side, “carry™ 160/31= 1681

the 8 of the 81 over to the left, add it
to the 160 already there and thus obtain 168 as our left-
hand-side portion of the answer. The product of 41 and
41 is thus found tobe 1681 (the same as we got by the
first method).

thirdly, instead of taking 100 or 10 as our theorelical base
and 50 a sub-multiple or multiple thereof as our working
base, we may take 10 and 40 as the bases respectively and
work at the multiplication as shown on the margin here.
And we find that the productis 1681 the same 10x4=40
as we obtained by the first and the second 411

methods. 4141

421
%4

168/1

Thus, as we get the same answer 1681 by all the three methods,
we have option to decide—according to our own convenience—
what theoretical base and what working base we shall select for
ourselves.

As regards the principle underlying and the reason behind the
vertical-multiplication operation on the right-hand-side remain-
ing unaffected and not having to be multiplied or divided *‘pro-
portionately’ a very simple illustration will suffice to make this

clear.

Suppose we have to divide 65 successively by 2, 4, 8, 16, 32
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0 rri.l-.li'n iTllL'1|'|-"|| I.HIi“ (Nl r"ll”.ﬁr “””lrlE

and 64 which bear bt o

themselves, We may write down ol

follows: ; e I
¥ 'i 1- ':T- i o8 ' _||1_
65 sl 8. 1k & - ug g~ A
B a amil |
63 - ﬁ.ﬁ_ . [ s consted.
:':'i- :-,-1":? i ...1“!..1 :,‘..IF : I lﬁll'l

: - e volivisor poch o
We notice that, as the denominator, 1.6 the diyvi ‘hfl- . ;m
ain ratio, the guoticnl gock ik GCCrCAsiNg,

‘rercasing 1n 4 cert !
aizbrintle Sl fis constant, And this

proportionately; but the remainder remd il
is why it is rightly called the remainder (15191 N {.riﬁ. [;1} ]

The following additional -:x:unpi:::-: }wli HCIVE u. i |'|_. T,t
the principle and process of HTTE, 1.¢. the sclecling .h it
multiple or sub-multiple as our working base amdd doing the
multiplication work in this way.

(1) 493¢49 Or (2) 49 %49
Working Base 100/2= 50 Working Base 1034550
491 49— 1
491 49— 1
2)48/01 48/1
5
2401 —
240/1
(3) 46 46 Or (4) 46 % 46
Working Base 100/2 = 50 Working Basc 104 530
46—4 46 —4
46—4 46—4
2)42/16 42016
e %5
21/16 /
210/,6=211/6
Widead Or (6) 46344
WI;';@ fuse 10 5= 50 Working Base 100/2~ 350
g 46— 4

A1--6

—_————
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40/ .4 2)40y24
#5)
20/24
200/ .4
= 202/4
(7) 5959 Or (8) 59 59
Working Base 10% 6= 60 Working Base 10x 5=150
591 5949
59—1 5949
58 [ 1 68 [ 4l
<6 [ %5 |
348 /1 348 [ 1
Or (9) 59 459 (10) 23 23
Working Base 100/2= 50 Working Base 10:2=20
594-9 23-13
59-4-9 2343
2)68 | 81 26 /9
—_-— w2 |
34 [ 81
5219
(11) 54 x 46 Or (12) 54 %46
Working Base 10 5= 50 Working Base 100/2=>50
54--4 5444
46—4 46—4
50 [ 56 250 [/ 16
% § ——
- — 25/ 16
250 [ 16 e
st 24784
=248 [ 4
(13) 19219 Or (14) 19219
Working Base 10x2=20 Working Base 10x1=10
19-1 1919

191 19-}-9
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j:gl:r L H I||I
:jl-ﬁ?l - :’-f:j' |
. O (16) 62 2 4%
) ?-Er’s;:?ng Base 107 4=40 Working Bass 104611,
m_l_zi J";I—l- :tl:
48+ 8 46— 12
50 /44
:ngr”ﬁ #6]
a0 f 54
280 [ 156 g
=297 | 6
Or (17) 6248 Or (18) 62 2 4% ,
Working Base 10% 5= 50 Working Bass 100/2- 27
62412 G2-1-12
dg — 2 A -~ 2
X 5/ e
e 30 fo4
300 /1 29 116
=297 [ 6
(19) 23 x 21 Or (20) 23~ 21
Working Base 10 3=30 Working Base 102220
23-17 2343
21-9 2141
et 24/ 3
s T
(21) 24‘5‘:{:_145 (22) 48 2 49 X
Working Base 1000/4=250 Working Bage 104 5=
249 — 1 482

e 49— 1




A=
e
L]
dw
i=
s
%
e
s
'}
(]

L
| ¥}

OF (23) 485049
Working Base 1002=30
g —2

191
7 j02
233,02=23/52

Note: Here 47 being odd, its division by 2 gives us a fractional
quotient 23} and that, just as half a rupee or half a pound or
half a dollar is taken over to the right-hand-side (as § annas or
10 shillings or 50 cents), so the half here (in the 23})is taken
over to the right-hand-side (as 50). So, the answer is 23/32.

(24) 249 x 246 (25) 229 x 230
Working Base 1000/4=250  Working Base 1000/4=230
249—1 22921
246—4 23020
4) 245/004 4)209/420
613/004 5214420
=61/254 =52/ 670

Note: In the above two cases, the } on the left hand side 1s
carried over to the right hand as 250 as ; of 1000.

The following additional worked out examples will serve to
further elucidate the principle and process of mul!j};blimtmn
according to the Vedic Sitra (‘Nikhilanr') and facilitate the
student’s practice and application thereof’:

(1) 87965 % 99998 (2) 48 97
87965— 12035 48— 52
99998~ 2 97~ 3

N 45 |56
87963 | 24070 S 158
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(3 7295
72 =28
95— 5

67 /,40

C——

68 | 40

5) T7x 9988
0077—9923

9985 — 0012
65/,,9076

=76 [ 9076

(7) 687 % 699
W.B. 100 7="T700
687—13
99— 1

686 [ 13
X317

= 4802 [/ 13

(9) 231 582
W.B. 100%6=600
231 - 369
582— 18

213 [ .42
%6 |

1278 | ﬁu""'f'l_.
=1344) 42

Vedic r‘hfﬂ.l'f!t'”!ﬂ”{:&'

(4) 889 x 9998
0889 —9111
0995 — 2

887 /8222
- 888 [ 8222

(6) 299299
Working Base
(W.B.) 1003 3 =300
299 - 1
299 — 1

298 / 01
w3/

—————

~894 /01

(8) 128 672
W.B. 100 7="700
128572
672— 28

lﬂ'ﬂ fliu].'ﬁ
X7

700 flﬂtiﬁ

~ 860/ 16

(10) 362785
W.B. 100 8 = 800
362 — 438
785~ 15

347 [¢s70
8/

2776 4570
=2841/ 70
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(11) 532 528
W, B. 1003 5+ 500
532132
528428

560 /96
x5/

——— e, e —

2800 /496
— 2808 / 96

(13) 532472
W.B. 100 5= 500
532432
472 - 28

504596
5]

2520/506
—2511/04

(15) 235 247
W.B. 1000/4=250
235— 15
247 3

4) 232 / 045
~ 58/045

(17) 19 499
W.B. 100 5=500
19 — 481
499 — 1

18/ 81
%35/

o S —

=94 | R

Or (12) 532 528

W.1B. 1000/2 - 500
532+ 32
528-- 28

2) 500 [ 896

S — — — —

- 280/ 896

Or (14) 532 %472

W.B. 1000/2~ 500
532432
47228

2)504/506
252506
=251/104

(16) 3998 x 4998

W.B. 100002 = 5000

3998 — 1002
4998— 2

2) 3996 | 2004
~1998 | 2004

Or (18) 19X 499

W.B. 1000/2= 500

19 - 481
499- 1

2) 18 | 481
=9/ 481

27
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15+ 20) 18445
(19) 6353 502 (

W.B. 1000/2- 500 W.B. 100/2=50
(35--135 18—32
5024 2 45— 5
2)637 [ 270 2)13 [,60
318! /270 61 [ 160
=318/ 770 8/ 10

(21) 38932516
W.B. 1000/2=500
389-111
516+ 16

2) 405/7776
202%/5776

2025555
— 200/724

Note: Most of these examples are quite easy, in fact much
easier, by the z=xfageegry (Urdhva-Tiryagbhyam) Siitra which
is to be expounded in the next chapter. They have been includsd
here, merely for demonstrating that they too can be solved by
the “Nikhilart' Siitra expounded in this chapter.

But before we actually take up the ‘Urdhva-Tiryak' formula
and explain its modus operandi for multiplication, we shall just
now explain a few corollaries which arise out of the *Nikhilait
Sitra which is the subject-matter of this chapter,

THE FirsT COROLLARY

E_Thﬂ first corollary naturally arising out of the ¢ Nikhilant'
":r?:: .madshﬂ ATAZA AT 7 F g 1) which means:
: ever the extent of it deficiency, lessen it still further 1
t ?Ifh"f*’f'f:r' f—'ﬂﬂﬂt; and also set up the square of that deficiency’
5 evidently deals with the squaring of numbers. A ¥

clementary examples will suffice to make jts meaning 0
application clear:
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guppose we have to find the square of 9. The following will
be the successive stages in our mental working:

() We should take up the nearest power of 10, i.e. 10 itself as
pur base.

(i) As 9 is 1 less than 10, we should deercase it still further
by 1 and set & down as our left-side portion of the answer.

8/
(iif) And, on the right hand, we put down the square
of that deficiency 1°® 81
(iv) Thus 92=§l

WO WD
b |
L f—

[
T
—_—

Now, let us take up the case of 8% As 815 2 less
than 10, we lessen it still further by 2 and get §-2,
ie. 6 for the left-hand and putting 2*=4 on the §
right-hand side, we say 82— 64 6/4

In exactly the same manner, we say

72— (T=3) [ 3t=4/9 7-3
62 (6—4) and 42=2/,6=13/6 7-3
52— (5—5) and 52—0/,5=25; and so0 on 49

Yes, but what about numbers above 10 7 We work -:xac}'l_y as
before: but, instead of reducing still further by the deficit, we
increase the number stilk further by the surplus and EH]FL:-}-I_

112=(1141) /12=12/1

{ . 1141

12/1

122=(12+2) [22=14/4

132=(134-3) /3= 16/9

142 (14-4-4) /42 18/,6=19/6 |
158=(15-+5) /52=20/,5 =225 |

L i =361 ; and so on. 194-9
192= (19+9) /92 =28/,1=2361 Lhed

28/,1 =361
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And then, extending the same rtule to numbers of two op
more digits, we proceed further and say:

912=82/31: 922 = §4/64; 932= 86/49;

94t — §8/36; 952 =90/25; 962=92/16;

07 =94/09;: 082 06/04; 992 =98/01;

1082 1 16/64; 103%= 106/03;

9592 978/121; 9882 =976/144; 993°=986/049;

892 78/,21 — 79/21; 882=76/;44 =T77/44;

00892 — 9972/0121; 99842 — 9968/0256; 99932 = 9986/0049.

The Alzebraical Explanation for this is as follows:
(a--b)*= a?+2ab4-b?
5970 = (100 — 3)2= 10000 — 600 4-9 - 94/09;
922 (100-58)2 - 10000 — 1600464 — B4/04:
1082= (100--8)* 100001600+ 64 ~ 116/64; and so on

A Second Algebraical Explanation is as follows:
a2—h{a-t-b)(a-="h)
soaf e (a-t-b) (a—b)+4-b?

So, if we have to obtain the square of any number a, we can
add any number b to 1t, subtract the same number b from it
and multiply the two and finally add the square of that number
b (on the right hand side). Thus, if 97 has to be squared, we
should select such a number bas will, by addition or by sub-
traction, give us a number ending in a zero (or zeros) and there-
by lighten the multi-multiplication work. In the present case, if
our b be 3, a--b will become 100 and a—b will become 94.
Their product is 9400; and b*=9 ,972-94/09. This proves the
corollary.

Similarly, 922~ (924-8) (92— 8)4-64 = 84/64:
932=(934+-7) (93-T)+-49=1386/49;
9887 (9883-12) (988 —12)+ 144 =976/144:
108* - (108+-8) (108—8)+64=116/64: and so on.
T.‘Ere Third Algebraical Explanation is based on the Nikhilen
Sitfra and has been indicated already.
91— 9
91—

g2 [ 81



The following add itional sample-examples will further serve

Arithmetical Compuitations

to enlighten the student on this corollary:

(1 192 Or (2) 192 (3) 29
194-9 19—1 29.4-9
1949 191 2049
28/ 41 18/1 38/ ,1

®2 g
—36/1
—36/1 —84/1

Or (4) 292 (5) 49° " Or (6) 492
201 49 -1 49— 1
29—1 49-1 401
28/ 1 48/ 1 2 48 / 0l

%3 % 5/
~24 /0l
-84 /1 ~240 /1
(7) 59t Or (8) 59* (8) 412
39-4-9 594+ 9 41 +1
5949 594 9 Al-1
68 /sl 2)68 | 81 42 /1
X35 ® 4
=34 /81
340 /1= 348/1 —168 /1
Or (10) 412 (11) 9892 (12) 7752
41— 9 989— 11  W.B. 100 8= 800
41— 9 989— 11 T715-25
i o 77525
2)32 / 81 - 978 | 121 s
L i I 750 /425
~16/ 8l %8
— 6006/25

Note: All the cases dealt with hereinabove are doubtless of
numbers just a little below or just a little above a power of ten
or of a multiple or sub-multiple thereof. This corollary is
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specially suited for the squaring ::.’E_:-:uﬂh ﬂlll‘ﬁhl?fﬁ: Sm:ming[ﬁ,
more complex and “difficult” cases will be taken upin ':hf next
chapter relating to the Ordhva-Tiryak  Sitra; and stll mog
sdiflicult’” will be explained in a still later chapter dealing wiyy

the squarring, cubing cte., of bigger numbers.

Tue Seconnp CorROLLARY

The sccond corollary is applicable only to a special i under
the first corollary, i.e. the squaring of numbers ending in 5 and
other cognate numbers. Tts wording is exactly the same as that
of the Sittra which we used at the outset for the conversion of
yulgar fractions into their recurring decimal equivalents, ie,
uFifade qdor. The Sitra now takes a totally different meaning
and, in fact, relates to a wholly different set-up and context,

Its literal meaning is the same as before (i.e. “by one more
than the previous one”); but it now relates to the squaring of
numbers ending in 5, e.g. say. 15. Here, the last digit is
5: and the “previous™ one is 1. So, one more than that 1/5
is 2. Now, the Sitra in this context tells us to multiply  2/25
the previous digit | by onc more than itself, i.e. by 2. =
So the left-hand side digit is 1 2; and the right-hand
side is the vertical-muitiplication-product, i.e. 25 as
usual,

Thus 152=1x 2/25=2/25.

Similarly, 252=2x 3/25= 6/25:

352 =3x4/25=12/25;

45% = 4 % 5{25=20/25;

55%= 5% 6/25=30/25;

63% = 6 7/25=42/25;

15%=Tx 8/25= 56/25:
852=8x9/25=T72/25:
9?-—9;:]1];’25=9ﬂ;25;
1052=10311/25 = 110/25:
:;5== 1% 12/25=132/25:

3= 156/25; 1352 =132 25; 1452= .
155% = 240/25: lﬁSh-—E?E::zS; 1?5==§£Ilgﬁg ;
1832=342/25- 1952 380/25: and so on, :
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The Algebraical Explanation is quite simple and follows
wtraightaway from the Nikhilarn Sarra and still more so from
he Crdfva-Tiryek formula to be explained in the next chapter
fg.v.). .

A sub-corollary to this corollary (relating to the squanng of
numbers ending in 5) reads: TRITROTNT (.-tuf;.-ﬂ,"‘”f"ﬂﬂfﬂ‘
k'pi) 2nd tells us that the above rule is applicable not only to
the squaring of 2 number ending in 5 but also to the multiplica-
tion of two numbers whose last digits together total 10 and
whose previous part is exactly the same.

For example, if the numbers to be multiplied are not 25 and

s, but, say 27 and 23 whose last digits, ie. 7 and 3 together
total 10 and whose previous part js the same namely 2, evEn
then the same rule will apply, i.e. that the 2 should be multiplied
by 3 the next higher number. Thus we have 6 as our lefi-hand
part of the answer: and the right-hand one is, by vertical multi-
plication as usual.

T 3021, And 5027 23 =6/21,

27
23

= /21

We can proceed further on the same lines and say:

06 < 94--90/24: 97939021 : 9§« 92 . 9016;

9091 =90/09; 3733 -12/21: 7971 -~ 56,09:

87w 83=72/21: 114114 132724; and so on.

This sub-corollary too is based on the same Nikhilam Shitra;
and harder examples thereof will more appropriately come
under the Ordlva-Tiryak formula of the next chapter or the
still later chapter on more difficult sguarings and cubings.

At this point, however, it may just be pointed out that the
above rule is capable of further application and come in handy,
for the multiplication of numbers whose last digits in sets of 2,
3 and so on together total 109, 1000 ete. For example—

197:<109=20/819

793+ 707 = 560631

884 816=720/,344 ~ 721344, }

N.B.—Note the added zero at the end of the left-hand-side of
the answer,
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THE THIRD COROLLARY

Then comes a Third Corollary to the Nikhjlars Sitra, which
rclates to a very special type of multiplication and which is not
frequently in requisition elsewhere but is often required in
mathematical astronomy etc. The wording of the sub-sirrg
(corollary) gw=ga= qaw (Ekanyiinena Pirvena) sounds as if it
wcere the converse of the Ekadhika Siitra. It actually is; and it
relates to and provides for multiplications wherein the multi-
plier-digits consist entirely of nines. It comes up under three
different headings as follows:

THE FIRST CASE

The annexed table of products produced by the single-digit
multiplier 9 gives us the necessary clue to an understanding of
the Sitra:

We observe that the left-hand-side is invariably
g;‘ %f 5 g one less than the multiplicand and that the
9% 4—3 | ¢ | right-side-digit is merely the complement of the
9x 5=4 | 5 |:left-hand-side digitfrom 9. And this tells us what
9% 6=5| 4 | to do to get both the portions of the product.
Ix 7=613 The word ‘Parva’ in this context has another
g;ﬁ g:g % technico-terminological usage and simply means
9% 10=9 | 0 | the “multiplicand’> while the word <¢Apara’

signifies the multiplier.

The meaning of the sub-corollary thus fits in smoothly into
its context, i.e. that the multiplicand has to be decreased by 1I;
and as for the right-hand-side, that is mechanically available by
the subtraction of the left-hand-side from 9 which is practically
a direct application of the Nikhilarh Sitra.

As regards multiplicands and multipliers of 2 digits each, we

have the following table of products:
11 x99=10 89 | =(11—1)/99 —(11—1)= 1089
12x99=11 88
13X99=12 87
1499=13 86
15x99=14 85
16 x99=15 84
17%99=16 83
18x99=17 82
199918 81
20x99= 19 80
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And this table shows that the rule holds good here too. And
by similar continued observation, we find that it is uniformly

applicable to all cases, where the multiplicand and the multiplier
consist of the same number of digits. In fact, it is a simple

application of the Nikhilam Siitra and is bound to apply.

7—-3| 77-23 | 979—-021
9—1| 99— 1999 |

6/3 | 76 / 23 | 978 / 021

We are thus able to apply the rule to all such cases and say,
for example:

777 9879 1203579

999 | 9999 9999999

776/223 | 9878/0121 | 1203578/8796421
9765431 1234567800
9999999 9999999999

9765430/0234569 | 1234567808/8765432191

Such multiplications involving multipliers of this special type
come up in advanced astronomy etc.; and this sub-formula
Ekanyunena Piirvena is of immense utility there.

THE SECOND CASE

The second case falling under this category is one wherein the
multiplicand consists of a smaller number of digits than the
multiplier. This, however, is easy enough to handle; and all that
is necessary is to fill the blank (on the left) with the required
number of zeroes and proceed exactly as before and then leave
the zeroes out. Thus— '

7 79 798 79
99 999 99 999 9999999

06/93'| 078/921 00797/99202 | 0000078/9999921

THE THIRD CASE

(To be omitted during a first reading.)
The third case coming under the ' heading is one where the
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multiplier contains a smaller number of digits than the mult;.
plicand. Careful observation and study of the relevant table of
products gives us the necessary clue and helps§us to understang
the correct application of the Sitra to this kind of examples.

Column 1 Column 2 Column 3
11X9= 9, 9 21 X9--18 | 9 37x9=33/3
12x9=10 | 8 22x9=19 | 8 46 xX9=41/4
13%9=11 | 7 23x9=20| 7 55x9=49/5
14%9=12 | 6 24%9=21 | 6 64 x9=157/6
15%9=13 | 5 25x9=22 | 5 73X 9=65/7
16x9=14 | 4 26x9=23 1| 4 82xX9=73/8
17%x9=15| 3 27>9=24 | 3 91 X9=281/9
18%x9=16 | 2 28 x9=25| 2 and so on.
19%x9=17 | 1 29x9=26 | 1
20x9=181 0 30x9=2710

We note here that, in the first column of products where the
multiplicand starts with 1as its first digit the left-hand-side part
of the product is uniformly 2 less than the multiplicand; that, in
the second column where the multiplicand begins with 2, the
left-hand-side part of the product is exactly 3 less; and that, in
the third column of miscellaneous first-digits the difference bet-
ween the multiplicand and the left-hand portion of the product
is invariably one more than the excess portion to the extreme
left of the multiplicand.

The procedure applicable in this case is therefore evidently as
follows:

(¢) Divide the multiplicand off by a vertical line—into a
right-hand portion consisting of as many digits as the
multiplier; and subtract from the multiplicand one more
than the whole excess portion on the left. This gives us the
left-hand-side portion of the product.

or take the Ekanyiina and subtract therefrom the previous i.c.
the excess portion on the left: and

(iif) Subtract the right-hand-side part of the multiplicand by

the Nikhila rule. This will give you the right-hand-side
of the product.
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The following examples will make the process clear:

(1) 43x9 (2) 63x9 (3) 122x9
4: 3.: 6: 3 : 12 :2:
:—5:3 :—=T7:3 —1:3:2
3:8:7 S:6:7 10:9:8
4) 112 x99 (5) 11119 x99 (6) 4599 x99
1:12: 111 : 19 : 45 : 99 :
—: 2:12 —1:12:19 :—46 : 99
1:10:88 110 : 07 : 81 45 : 53 :01
(7) 15639 x99 (8) 25999 x 999 (9) 777999 x 9999
156 : 39 : 25 :999 : 77 : 7999 :
—1:57:39 :—26 : 999 :—178 : 7999
154 : 82 : 61 25 : 973 : 001 77 : 7921 : 2001
(10) 111011 x99 (11) 1000001 x 99999
1110 : 11 : 10 : 00001 :
—11:11:11 + —11 : 00001

1099 : 00 : 89 9 : 99990 : 99999
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Multiplication

By URDHVA-TIRYAK SUTRA

Having dealt in fairly sufficient detail with the application of
the Nikhilarh Sitra to special cases of multiplication, we now
proceed to deal with the 3safagwwary (Urdhva Tiryagbhyam)
Sitra which is the General Formula applicable to all cases of
multiplication and will also be found very useful, later on, in the
division of a large number by another large number.

The formula itself is very short and terse, consisting of only
one compound word and means “vertically and cross-wise”.
The applications of this brief and terse Sitra are manifold (as
will be seen again and again, later on). First we take it up in its
most elementary application namely, to Multiplication in
general.

A simple example will suffice to clarify the modus operandi
thereof. Suppose we have to multiply 12 by 13.

(i) We multiply the left-hand-most 12
digit 1 of the multiplicand verti- 13
cally by the left-hand-most digit
1 of the multiplier, get their 1:342:6=156
product 1 and set it down as the
left-hand-most part of the answer.

(ii) We then multiply 1 and 3, and 1 and 2 cross-wise, add the
two, get 5 as the sum and set it down as the middle part of
the answer; and _

(iii) We multiply 2 and 3 vertically, get 6 as their product and
put it down as the last the right-hand-most part of the
answer.

Thus 12 x 13=156.
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A few other examples may also be tested and will be found tq
be correct :

(N 12 (2) 16 3) 21
11 11 14
1:142:2 1:146:6 2:841:4
=132 =176 =294
4) 23 (5) 41
21 41
4:2146:3 16 : 444 :1
=483 = 1681

_ Note: When one of the results contains more than 1 digit, the
right-hand-most digit thereof is to be put down there and the
preceding, i.e. left-hand-side digit or digits should be carried
over to the left and placed under the previous digit or digits of
the upper row until sufficient practice has been achieved for
this operation to be performed mentally. The digits carried over
may be shown in the working (as illustrated below):

(1) 15 (2) 25 (3) 32 (4) 35 (5) 37 (6) 49

15 25 32 35 33 49
105 405 924 905 901 1621
12 22 1 32 32 78

225 625 1024 1225 1221 2401

The Algebraical principle involved is as follows:

Suppose we have to multiply (ax+b) by (cx+d). The product
is acx2+x (ad+bc)+bd. In other words, the first term, i.c. the
coefficient of x2 is got by vertical multiplication of ¢ and ¢; the
middle term, i.c. the coefficient of X is obtained by the cross-wisc
multiplication of a and d and of b and ¢ and the addition of ths
two products; and the independent term is arrived at by vertical
multiplication of the absolute terms. And, as all arithmetical
numbers are merely algebraic expressions in x (with x=10), the
algebraic principle explained above is readily applicable to
arithmetical numbers too. Now, if our multiplicand and multi-
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plier be of 3 digits each, it merely means that we are multiplying
(ax?+bx-+-c) by (dx2+-ex-+f) (where x:=10):

ax*+4-bx-}-c
dx2t-ex4-f

adx!+x3 (ae+bd) +x2 (af+ be+cd)+x (bf-+-ce)+-cf
We observe here the following facts:

(i) that the coefficient of x¢ is got by the vertical multiplication
of the first digit from the left side;

(if) that the coefficient of x? is got by the cross-wisc multipli-
cation of the first two digits and by the addition of the
two products;

(iii) that the coefficient of x? is obtained by the multiplication
of the first digit of the multiplicand by the last digit of the
multiplier, of the middle one by the middle one and of the
last one by the first one and by the addition of all the three
products;

(iv) that the coefficient of x is obtained by the cross-wise
multiplication of the second digit by the third one and
conversely and by the addition of the two products; and

(v) that the independent term results from the vertical multi-
plication of the last digit by the last digit.

We thus follow a process of ascent and of descent going for-
ward with the digits on the upper row and coming rearward
with the digits on the lower row. If and when this principle of
ordinary Algebraic multiplication is properly understood and
carefully applied to the Arithmetical multiplication on hand
(where x stands for 10), the Ordhva Tiryak Siitra may be deem-
ed to have been successfully mastered in actual practice.

A few illustrations will serve to explain this Ordhva-Tiryak
process of vertical and cross-wise multiplications:

(1) 111 ) 108 (3) 109
111 108 111
12321 10 60 4 11 099

1 6 1
11 66 4 12 099
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@ 116
114

12104
112

13224

(7 532
472

2079 04

432

2511 04

(10) 795
362

219380
6841

287790

(13) 6471
6212

36 6 6 6 752
35311

4019785

Vedic Mathematics
(5 116 (6) 582
116 231
12 32 6 101 3 42
113 331
13 45 6 1344 4
(8) 785 9 321
362 52
216760 05692
6741 11
2864170 16 692
(11) 1021 (12) 621
2103 547
2147163 30 4 5 87
351
33 9 6 87
(14 87265
32 7
24787275175
32396243
2802690005

Note: 1t need hardly be mentioned that we can carry out this
Ordhva-Tiryak process of multiplication from left to right or
from right to left as we prefer. The only difference will be that,
in the former case, two-line mPltiplication will be necessary at
least mentally while, in the latter case, one line multiplication

will suffice, but careful practice|is necessary.
Owing to their relevancy t

this context, a few Algebraic

examples of the Urdhva-Tiryak type are being given.
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(1) a+b
a-+9b

a?4-10ab+-9b2

(2)a+3b
S5a+47b

5a2+22ab+-21bt

(3) 3x245x+7
4x24+-7x4-6

12x44-41x34-81x24-79x 4-42

(4) X5+43x4+4-5x34-3x24-x 41
7x54-5x443x34-x34-3x 4-5

7x104-26x9 4 53x8-- 56x7 +43x8-+40x54-41x4}-38x3+ 19x2+8x
+5

Note: If and when a power of x is absent, it should be given a
zero coefficient; and the work should be proceeded with exactly
as before. For example, for (7x345x+1)(3x3+x2+3), we work
as follows:

Tx3+4+0+5x+1
3x34-x2+404-3

21x8+7x5+415x44-29x3 +x2415x 43

THE USE OF THE VINCULUM
It may, in general, be stated that multiplications by digits
higher than 5 may some times be facilitated by the use of the
vinculum. The following example will illustrate this:
@O 576 Or (2) 624 But the vinculum process is
214 214 one which the student must
_— very carefully practise, before
109944 12249  he resorts to it and relies on it.
1332 111
123264 123264
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MISCELLANEOUS EXAMPLES

There being so many methods of multiplication one of them
the Urdhva-Tiryak being perfectly general and therefore appli-
cable to all cases and the others the Nikhilar, the Yavadiinam
etc. being of use in certain special cases only, it is for the student
to think of and weigh all the possible alternative processes avail-
able, make up his mind as to the simplest method in each parti-
cular case and apply the formula prescribed therefor.

We now conclude this chapter with a number of miscellaneous
examples and with our own ‘“running comments’’ thereon giving
the students the necessary experience for making the best possi-
ble selection from amongst the various alternative methods in
question:

(1) 73x37
(i) By Urdhva-Tiryak rule, 73
37
2181
52
= 2701
or (ii) by the same method but with 133
the use of the vinculum. 043
04519
12
Evidently, the former is better. = 2701
(2) 94« 81 _
(i) By Ordhva-Tiryak, 94 Or (ii) 114
81 121
7214=17614 13794 = 7614
4

(ii) By ibid (with the
use of the Vinculum)
Evidently the former is better; but
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(#ii) The Nikhilarih Method is still better: 81—-19

94— 6
75/ ,14=- 7614
(3) 123x 89
@) 123 Or (ii) 123 Or (iii) 123423
089 111 8911
08527 11053 112/253}
242 = 10947 _—
—_— 110/63=109/47
= 10947
(4) 652x43
(i) 652 (i) The Vinculum method is manifestly
043 cumbrous in this case and need not
—_— be worked out.
04836
232 (1352
% 0043)
28036 —

(iii) The Nikhilarh method may be used and will be quite
easy; but we will have to take a multiple of 43 which will bring
it very near 1000. Such a multiple is 43 x 23=989;

and we can work with it and finally 652— 348
divide the whole thing out by 23. 989 —011
This gives us the same answer (28/036). _
641/,828

23) 644828

28036

Therefore, the Ordhva (general) process is obviously the best
in this case.

(5) 123x112 (Nikhilam)
() 123  (ii) Asallthe digits (i) 123423
112 are within 5, the 112-+12
Vinculum method -
13776 is manifestly out 135 /576
of place. - 137/ 76
= 13776 —

Both the first and the third methods seem equally good.
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(6) 99%99 (ii) 101 (iii) 99—1 (iv) The Yavadiinam

Q) 99 101 91 method is also
—_— —_— quite appropriat
_ 10201 =98/01 and easy Priate
?é%l =9801 appropriate 992=98/01
=9801
(M 246 8) 222 9) 642 (10y 321
131 143 131 213
20026 20646 62002 67373
122 111 221 1
= 32226 = 31746 = 84102 =68373

In all these 4 cases Nos. 7—10, the General formula fits in
at once.

(11) 889 898
(i) ggg Or (i) 1111 Or (iii) 889—111 | *111+11

1703 898—102 | 102+ 2
646852 1303322 7874322 | 113 /22
13047 i Sl
21
— 798322 =798/322
= 798322

Note : Here in (iii) Nikhilam method, the vertical multiplication
of 111 and 102 is also performed in the same manner (as shown
in the * marked margin).

(12) (i) 576 Or (i) Vinculum  Or (iii)

X 328 method 576—-424 N.B. 984 being
inappro- 984— 16 3x 328, we

151288 priate _ have made
3764 3)560/,784 usc of it
and then

= 188928 = 188/928 divided out

by 3.
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332%x 3=996
817183
996—4

)813/732

—271/244

(13) 817x332
() 817 Or (i) Vinculum Or (iii) .,
332 method may
I also be used.
247034
2421 3
=271244
(14) 989x989  Or (ii) Or (iii)

Or (iv) Yava-

@ 989 Vinculum method 989— 11  danam
989 also useful 989— 11 9892=978/
1011 121. Thisis
814641 1011 =978 /121  thebest.
14248 ——
21 1022121
—— =978 /121
=978121
(15) 8989 %8898 Or (ii) Or (iii)
(i) 8989 1TOTI1I 8989 —-1011
8898 11102 8898 —1102
64681652 120024122 7887 | 4122*
1308147 111/
2221 =79984122 _—
S— 7998 | 4122
= 79984122 *1011+ 11
11024102
1113 /,122
=1114 /122
(1) 213x213 Or (i) Or (iii) 213+13 N.B. The di-
(i) 213 Vinculum 213413 gits being
213 method not small, the
suitable. 226 /,69 general
44369 %2/ formula is
1 always
=45369 —453 [ 69
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PRACTICAL APPLICATION
IN
“COMPOUND MULTIPLICATION"

A. SQUARE MEASURE, CuBiC MEASURE

This is not a separate subject, all by itself. But it is often of
practical interest and importance, even to lay people and
deserves our attention on that score. We therefore deal with it
briefly.

AREAS OF RECTANGLES

Suppose we have to know the area of a rectangular piece of
land whose length and breadth are 78" and 511" respectively.

According to the conventional method, we put both thesc
measurements into uniform shape either as inches or as vulgar
fractions of feet—preferably the latter and say:

92 y 71 _ 6532 _ 1633

12712 144 36

36) 1633 (45 sq. fi. 7
144

Area =

193
180 | .
—_— > Area=45sq. ft. 52 sq. in.
13
x 144

36) 1872 (52 sq. in. '.
180

.

72
72

—e

In the Vedic method, however, we make use of the Algebrai-
cal multiplication and the Adyam Siitra and say:
Arca S5x-11 .
-~ 117
«7x 18 } 35x24117x+4-88

Splitting the middle term (by dividing by 12), we get 9 and 9
as Qand R.
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+ Ee35x24-(9 X 12-4-9)x-88
445 4-(9 % 12)+-88
44 sq. ft. 4-196 sq. in.
45 sq. ft. 52 sq. in.

And the whole work can be done mentally:
(2) Similarly 3’ 7"}= 15x2465x4-70

% 5'10"  =20x24-(5%x 12)4-70
=20 sq. ft.4-130 sq. in.

and (3) 7x+11}=35x2+111x+88
X 5x+48 [ =44 sq. ft. +124 sq. in.

VOLUMES OF PARALLELEPIPEDS

We can extend the same method to sums relating to 3 dimen-
sions also. Suppose we have to find the volume of a parallele-

piped whose dimensions are 3'7", 5'10" and 72"

By the customary method, we will say:

C.C. — 43 y 70 y 86 (withall the big multiplications and
= 127° 127 12 divisions involved). But, by the Vedic

-process, we have:

3x+7 }= 20x34+-10x+410
5x+10 %42

140x34-110x2-+90x+4-20
=149x3+49x24-Tx +8
=149 cub. ft and 1388 cub. in.

Thus, even in these small computations, the customary
method seems to have a natural or ingrained bias in favour of
needlessly big multiplications, divisions, vulgar fractions etc.,
for their own sake. The Vedic Stras, however, help us to

avoid these and make the work a pleasure and not an infliction.
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PRACTICE AND PROPORTION
IN
COMPOUND MULTIPLICAFION

The same procedure under the geifagw (Urdhva-Tiryak
Siitra) is readily applicable to most questions which come under
the headings ‘Simple Practice” and “Compound Practice”,
wherein “ALIQUOT” parts are taken and many steps of work-
ing are resorted to under the current system but wherein
according to the Vedic method, all of it is mental Arithmetic.

For example, suppose the question is:

“In a certain investment, each rupee invested brings Rupees

two and five annas to the investor. How much will an outlay of
Rs. 4 and annas nine therein yield?”

THE FIRsT CONVENTIONAL METHOD

(By Means of Aliquot Parts)
Rs. As. Ps.
For One Rupee 2-5-0
For 4 Rupees 9-4-0
8 As.=3} of Re. | 1-2-6
la=} of 8 As. 0-2-33
Total 10—8—93
for Rs. 4 and
annas 9
SECOND CURRENT METHOD
(By Simple Proportion)
Rs.2—-5-0=3Z;

and Rs. 4—9—0=Rs, 12
""On Re. 1, the yield is Rs. 32
~.On Rs. 13, the yield is Rs. 82 x 8 =Rs. 2183
256) 2701 (10—8—93
256

141
X 16



Multiplication

256) 2045 ( 8
2304

208
%12

256) 2496 ( 9
2304

192
— =3/4
256

31

BY THE VEDIC ONE-LINE METHOD
2x + 5
4 + 9
8x2/38x/45

Splitting the middle term (or by simple division from right to
left):
10x2+6x+243
=Rs. 10 and 833 annas
A few more instances may be taken :

(1) Rs. 2/5%Rs. 2/5
2-5
2-5

4/20/25=Rs. 5/5{% annas

(2) Rs. 4/9x Rs. 4/9
4-9
4-9

16/72/81 = Rs. 20/137'; annas

(3) Rs. 16/9xRs. 16/9
16—9
16—9

256/288/81 - Rs. 274/ annas 57
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(4) Rs. 4/13xRs. 4/13
(¥) By the current ‘Practice’ method

Rs.—As.
For Re. 1 4-13
For Rs. 4 19— 4

8annas=}of Re.1 2— 6}
4 annas=1 of 8 As. 1- 3%
l1a=} of 4 annas 0-442

Total 23 —-2:&-

(ii) By the current ‘Proportion’ method

77
Rs.4/13=Rs. 1=

LT 71 5929
16X 16~ 256
256) 5929 (23—232;
512

809
768

41
%16

256) 656 (2
512
144
—— —9/16
256

(iif) By the one-line Vedic method
4-13
4-13

——

16/104/169 = Rs. 23/2:%- annas

N.B. Questions relating to paving, carpeting, ornamenting ¢tc.,
which are under the current system usually dealt with by the
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‘Practice’ method or by the ‘Proportion” process can all be readily
answered by the Ordhva Tiryak method.

For example, suppose the question is:

At the rate of 7 annas 9 pies per foot, what will be the cost
for 8 yards 1 foot 3 inches?
25-3
7-9

175/246/27
=195 annas 8% pies
=Rs. 12/3/8%
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Division

By e MNixmeas MerHoD

Having dcalt with Multiplication at fairly considerable length,
we now go on to Division; and there we start with the Nikhilam

method which is a special one.
Suppose we have to divide a numbsr of dividends (of two

digits each) successively by the same Divisor @ we make & chart
therefor asfollows:

) 9) 12 @ 9 21 G 9 33

=L 2 2
1/3 2/3 3/6
(4) 9) 4/0 5 9 52 & 9 6l
[4 5 /6
. 44 5(1 6/1
(N 9) 7/0 (8 9) 80
a B
7 8/8

Let us first split cach dividend into 2 left-hand part for the
quotient and a right-hand part for the remainder and divide
them by a vertical line.

In all these particular cases, we observe that the first digit v_uf
the dividend becomes the quotient and the sum of the two digits
becomes the remainder., This means that we can mechanically
take the first digit down for the quotient-column and that, by
adding the quotient to the second digit, we can getthe remainder.
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Neat, we talke as dividends, another set of bigger numbers of 3
dizits cach and make a chart of them as follows;

M 9 W3 @ w1 3 9 12/4
I/t 2 1/3
11/4 12/5 13/7
(h 9 Ig0 (5 9 211 5 9 31/
1/7 2/3 3/4
17/7 23/4 34/5

In these cases, we note that the remainder and the sum of the
digits are still the same and that, by taking the first digit of the
dividend down mechanically and adding it to the second digit
of the dividend, we get the second digit of the quotient and that
by adding it to the third digit of the dividend, we obtain the
remainder.

And then, by extending this procedure to still bigger numbers
(consisting of still more digits) we are able to get the quotient
and remainder correctly. For example,

() 9 12031 (2) 9 12301 (3) 9 120021)2
133/6 136/6 13335/6

1336/7 1366/7 133356/8

And, thereafter, we take a few more cases as follows:

(1 9) 1/8 (2) 9 22/5 (3) 9) 13/6

sakt At 258
1/9 24/9 14/10
@ 9 237
2/5
25/12

But in all these cases, we find that the remainder is the same
as or greater than the divisor. As this is not permissible, we re-
divide the remainder by 9, carry the quotient aver to the quotient
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column and retain the final remainder fn the remalnder eolun,
as follows:
(1) I (2) by 2205 (1 0y 136
[l 214 | )4
1/9 249 14410
2/0 2510 1571
(4} ] EEJJ{;
25/12
126/ 3

We also notice that, when the remainder is preater than the
divisor, we can do the consequent final division by the same
method, as follows:

(y 9 13/6 @ 9 237 (3 9) 101164/
1/4 215 11239/13
14/1)0 250112 1123913202
i /1 /2
11 N 244
15/ 1 26/ 3 112405 [4

We next take up the next lower numbers 8, 7 ete. as our divizors
and note the results, as follows:

) 8 23 @ 7 12 B 8 41
/4 B B
27 115 1/5

Here we observe that, on taking the first digit of the dividend
down mechanically, we do not get the remainder by adding that
digit of the quotient to the second digit of the dividend but have
to add to it twice, thrice or 4 times the quotient-digit alrcady
taken down. In other words, we have to multiply the quotient-
digit by 2 in the case of 8, by 3 in the case of 7, by 4 in the cane
of 6 and so on. And this again means that we have to multiply
the quoticnt-digit by the divisor’s complement from 10,
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Al thas sogppests that the Mikhffariz rule aboul the subtraction
of all fronn @ and of the Lt from 10 ds at work; and, to make
sire of i, we tey with bipprer divisions, as Follows:

(&9 1y

(73 111

(3) $88) 17234

o 27 127 1z J112
122 1/38 1/346
() (5) (6)
BENE) 12345 7999) 1/2345 8897) 1/2345
2 12 2000 2001 TI03 /1103
/3457 1/4346 1/3448
(7 (8) @)
8897) 1/1203 7989) 1/0102 899997) 1/010101
1103 /1103 2011 J2011 100003 /100003
1/2306 12113 1/110104
(10) (1D (12)
89) 11/11 89) 10013 §88) 12/345
1yl T 1y 112 1/12
/22 1/1 /336
12/43 = 13801
112/45
(13) (14) (15)
8997y 210012 8998) 30/0000 8888) 10/1020
o3~ 2006 1002~ 3/006 12 1112
/3009 J3006 /1112
233081 33/3066 113252
(16) (17) (18)
898T) 20/0165 899) 10/102 §9998) 20/02002
1013 2026 10T 101 {0002 2/0004
12026 /101 /20004
22/2451 11/213 22/22046




Division

59
(19) (20 210
£9297)  10/10101  89997) 12{34567  98987) 10/30007
16003 1/0003 0003 1j0003  DI0I3  0/1013
10003 /30009 JO0000
11/20134 13/64606 10/40137
22) (<3)
92979)  1I1JLLLLL 88) 110,01
o021 00/021 1 12
0/0021 2/4
00021 - [48
111/13442 124/89
= 125/1

In zll the above examples, we have deliberately taken as divi-
sors, numbers containing big digits. The reason therefor is as
follows: .

(i) 1t is in such division that the student finds his chief diff-
culty, because he has to multiply long big numbers by the
estrial” digit of the quotient at every step and subtract that
result from each dividend at each step; but, in our method
of the Nikhilawz formula, the bigger the digits, the smaller
will be the reguired complement from 9 or 10 as the case
may be; and the multiplication-task is lightened thereby.

(i) There is no subtraction to be done at ail!

(iif) And, even as regards the multiplication, we have no multi-
plication of numbers by numbers as such but only of a single
digit by a single digit, with the pleasant consequence that,
at no stage, isa student called uponto multiply more than
9 by more than 9. In other words, 9y 9=§1, is the utmost
multiplication he has to perform.

A single sample example will suffice to prove this:

(24)  9819) 2 01 37
0181 02,62
2 0499

I Wt s (ostet Gt Y Mpmpicr, N DR 1T § i | down i
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itx proper plice, as 16 with no “carrying” over to the left ang

Al M.
Thus, in our *division™ process by the Nikchilar fﬂrmulﬂ. Vi

perform only small single-digit multiplications; we do g suh.
traction and ne division at all; and yet we readily obtain the 1,
quired quotient and the required r{;maindr:tl'. In fact, we hay,
accomplished our division-work in full, without actually dﬂing
any division at alll

As for divisors consisting of small digits, another simple fg;.
mula will serve our purpose and is to be dealt witfil in the ney
chapter. Just at present we deal only with big divisors and ex.
plain how simple and easy such difficult divisions can be mage
with the aid of the Nikhilawt Siitra.

And herein, we take up a few more illustrative examples relat
ing to the cases already referred to wherein the remainder ex.
ceeds the divisor and explain the process, by which this difficulty
can be casily surmounted by further application of the same
Nikhilam method :

(23) a8y 1 98
12 12
1 110

The remainder here 110 being greater than the divisor 88 we
have to divide 110 by 88 and get the quotient and the final re-
mainder and carry the former over and add it to the quotient
already obtained. Thus, we say:

88) 1 10
12 12
i -3

so, we add the newly obtained 1 to the previously obtained 1 and
put down 2 as the quotient and 22 as the remainder.
This double process can be combined into one as follows:

88) 1 98
12 12
1 110

/12

1122
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A few paore diustrations will e7ve to help the student in prac-
fieips LR r:‘la:ffl,‘,lal
(26 E5597) 12 94567 o7 9n 1 e
a5 1 03 53 -
30003 —
13 1 24605 =
107433 T
14 34609

(2%) 95579) 111 83171
(FH)2] 4 021

0 002l
00021
111 1 01502
U2l
112 01523

Thus, even the whole lengthy operation of division of 11199171
by 99979 involves ne division and ne subtraction and consists of
a few multiplications of single digits by single digits and a Iittle
addition of an equally easy character.

Yes, this is all good enough so far as it goss; but it provides
only for a particular type namely, of divisions involving large-
digit numbers. Can it help us in other divisions, i.e. those which
invalve small-digit divisors?

The answer is a candidly emphatic and unequivocal No. An
actual sample specimen will prove this:

Suppose we have to divide 1011 by 23. By the Nikkilon
method, the working will be as follows:

(29) 23) 10 1 1
T 7 7

g & B

17 6 2 0

42 42
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23 = 3 -
23 28
27 3 9 0
21 21
30 3 2 !
21 21
33 2 5 2
14 14
35 2 0 6
14 14
37 1 6 0
7 7
38 1 3 7
7 7
39 I 1 4
4 - 2 (41t ivi
P 2 - (4 times the divisor)

1&is is manifestly not only too long and cumbrous but much
more so than the current system which, in this particular case. js
¥

indisputably shorter and easier.

In such a case, we can use a multiple of the divisor and finally
multiply again by the Anuripya rule. Thus,

(30) 23x4=92) 10 11

8 0 8
10 9]
x4
40 —9
43 22

Eut even this is too long and cumbrous; and this is a suoitable

case for the application of the
This we proceed to explain in the

qFeq (Pardvartya) method:
next chapter.
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Division

By THE PARAVARTYA METHOD

We have thus found that, although admirably suited for appli-
cation in the special or particular cases wherein the divisor-digits
are big ones, yet the Nikhifart method dees not help us in other
cases namely, those wherein the divisor consists of small digits.
The last example with 23 as divisor at the end of the last chapter
has made this perfectly clear, Hence the need for a formula
which will cover other cases. And this is found provided for in
the Paravartya Sitra, which iz a special-case formula, which
reads “Paravartya Yojayet” and which means “Transpose and
apply™.

The well-known rule relating to transposition enjoins invari-
able change of sigﬁ with every change of:side. Thus 4+ becomes —
and conversely; and X becomes = and conversely. In the current
system, this law is known but only in its application to the trans-
position of terms from left to right and conversely and from
numerator to denominator and conversely in connection with
the solution of equations, the proving of Identitics etc., and also
with regard to the Remainder Theorem, Horner's process of
Synthetic Division etc, According to the Vedic system, however,
it has a number of applications, one of which is discussed in the
present chapter.

At this point, we may make a reference to the Remainder
Theorem and Horner’s process and then pass on to the other
most interesting applications of the Paravariya Sitra.

THE REMAINDER THEOREM

We may begin this part of the exposition with 2 simple prool
of the Remainder Theorem, as follows:
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If E, D, Q and R be the dividend, the divisor, the quotient g
the remainder in a case of division and if the divisor is {x-.p}.
we may put this relationship down algebraically as follows:

E=D. Q4R ie E=0Q (x—p)+R.
And if we put x=p, x—p becomes Z¢ro ;_and the idcfllily takes
the shape, E=R. In other words, the given expression E jtg)r

(with p substituted for x) will be the remujn_der. . .
Thus, the given expression E (i.e. the dividend itself) (with

substituted for x) automatically becomes the remainder. Ang p

is automatically available by putting x—p=0, i'ﬂ', by merely
reversing the sign of —p which is the absolute term in the bing.

mial divisor. In general terms, this means that, if E be axn
bxn-tcxt-24-dxn—2 ete. and if D be x—p, the remainder i
apt-+bpr-1-epr-24-dpi-? and so on (i.e. E with p substituteg

for x). This is the Remainder Theorem.
Horner's process of Synthetic Division carries this still further

and tells us the quotient too. It is, however, only a very small
part of the Pardvartya formula which goes much farther and is
capable of numerous applications in other directions also.

Now, suppose we have to divide
(12x%—8x—32) by (x—2). x—2 12x*—8x—32
2 24432

12x4- 160 0

:We put x—2 (the divisor) down on the left (as usual); just below
it, we put down the—2 with its sign changed; and we do the
multiplication work exactly as we did in the previous chapter.

A few more algebraic examples may also be taken:

(1) Divide 7x*+5x +-3byx—1 x—1 Tx*45x 4 3
1 7 +12

Tx+12 15
.. The quotient is 7x+12; and the remainder is 13.
(@) x+1 Tt5x 43 (3) x—2 X4 Tx2 6x 4 5
I R - 2 418 +48
x -2 45 x*49x 424 53




Division
4 x=3 x*-x1+7x 43
3 346 39
x34+2x+13 42
(5) x=5 x3-3x3+10x -7

.

5 5 410 100
x24+2x+20 493

65

At this stage., th.e student should practise the whole process as
a mental exercise in_ respect of binomial divisors at any rate.
For ?xamPle. with regard to the division of (12x2—8x — 32) by
the binomial (x—2), one should be able to say:
12x2—8x—32
=) =12x+16; and R=0

The procedure is as follows:

o 12x2 .
(i) —~8ives 12 as the first coefficient in the quotient; and we

put it down;

(ii) multiply 12 by—2, reverse the sign and add to the next
coefficient on the top (numerator). Thus 12x—2= —24,
reversed, it is 24. Add—8 and obtain 16 as the next coeffi-
cient of the quotient.

(iii) multiply 16 by—2; reverse the sign and add to the next co-
efficient on top. Thus 16x—2= —32; reversed, it is 32; add
—32 and obtain 0 as the remainder.

2
Similarly, (1) :’i:—_s—’:-’r?f.'.Q= 7x+12; and R=15
TX245x+3 . 4 4 .. B
(2) —W_.Q-—‘]x Z,and'R—S
3) x3+7:2+26x+5 5. Q=x249x+24; and R=53
@) "“"‘;‘tg"“ ~.Q=x24+2x+13; and R - 42
and (5) x3~3);2_+510x—-7 S.Q=x212x-4-20;and R- 93

This direct and straight application of the Para-
vartya Siitra should be so well practised as to
become very simple mental arithmetic. And the
student should be able to say at once:
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() f—x— | gl—x'4x1 +-1a4+5
T+ 141
o 40
142
Al 54T Q=233 anl K=15.4]
@ A—2—0 e Il Al
W R
L1 + 205
15641207
R M1 s 155
S bt e M) and B= HEx 132
3 st Be-Jerpl) =Jg=3
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b 42
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=2 ]
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e '-. -.E
- o=
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_ 3 .g_:_:.!‘_.;.;-—j' x5+ﬂ“|":':= —T:-;‘-—]—-D+ﬁ Nﬂ‘f{.‘ “'I.E T
{6) ‘5'3:1-_:}_:_‘:_‘3'__ 1-2 -3 x* and the
l -2 43 ZEro X CArce
0 4040 fully.
14-1+0 —6 4349

S Q= xt4-x; and R= —6x24-3x1-9

{T} xt_:{J.-l ¥ 0455 +[}+}- Note the zero x® and zero
e —

j = ] —1 x carefully.
1 =1

1--1
141-1 D-|_{'j_ S Q=x4tx41; and R=0

&) x3-2x24+1 —2x5—Txt42x% 18x2—3x— 8 Norethe
2401 -4 40 42 Zero x in
-22 4+ 0 411 the divisor
—40 4 04-20 carefully.
—2 —11'=20 =20 < B4i2
s Q=—-2x2—11x—20; and R= —20x*4-8x412

In all the above cases, the first coefficient in the divisor happens
ed to be 1: and therefore there was no risk of fractional cocffi-
cients coming in. But what about the cases wherein, the first
coefficient not being unity, fractions will have to be reckoned
with?

The answer is that all the work may be done as before, with a
simple addition to the effect that every coefficient in the answer
must be divided by the first coefficient of the divisor.

Thus, 2x—4 —d4x3—Tx249x —12

o —

) -8 -30 -4
2 _15/2-21/2—-54

JQ=—-2x2-Tix—-10}; and R=-54
This, however, means a halving of each coefficient (at every
step); and this is not only more cumbrous but also likely to lead
to confusion, reduplication ete.
The better method therefore would be to divide the divisor

'tself at the very outset by its first coefficient, complete the
Working and divide it all again, once for all at the end. Thus:
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2x—4 —dx?— Tx24 9x —12  N.B.—Note that g,
% - — 8 — 30 —42 R always remaing
constant.

8 DH-4 -15 —21 -54
=Rl o ALE5e
Two more illustrative examples may be taken:

() 3)3x—7 3xf—x — 5
x—2% 7 414

2t 3)3x16 9 ., Q=xi2iandR=9

X2 9

(2) 2) 2x2—3x -1 2x5_9x4.-5x3416x2 —16x+36
- Tix+1 3 -1
2 0 | 3

- 7 +2%
)2 -6 =5 4113 - 174-53
1 —3 —2345F  15/44301

S Q=x2-3x2-21x45}; and R=3}x+30}
N.B.: Note that R is constant in every case.

ARITHMETICAL APPLICATIONS (MISCELLANEOUS)

We shall now take up a number of arithmetical applications
and get a clue as to the utility and jurisdiction of the Nikhila
formula and why and where we have to apply the Pardvariys

Sitra.
(1) Divide 1234 by 112

112 1 234
888 888
1 1 122

2 1 122
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. 010

: 888

— 8§98
-_'_E

=5 _ 896

B

2

11
— [
Put this is too cumbrous. The Pargvartya formula will be

more suitable. Thus,

112 1 2 43 4
P | -1 =2
=
1 1" 0 2 Q=I1l;andR=2

This is so much simpler.

(2) Divide 1241 by 112.

() 112 1 241 (#i) This too is too long.
§68 888 Therefore use Pardvariya

1 1 129
888 112 1 2 4 1

2 1 017=1=3 ~1-32
EBE —1-—2 e l'1=1].;
905 11 09 and R=9

8 — 896

11 9

(3) Divide 1234 by 160

(i} Nikhilarr method is manifestly unsuitable. We should
therefore use the Pardvartya formula.
(i) 160 1 2 34  Butthisis a case where Vilo-
640 -6 0 kanenaiva, i.e. by simple inspec-
240  tion or observation, we can put
6 274 the answer down.
1 —160

T 114
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@ 11203 23 94179
—T—2—0—3 —2 —4-0-6
oY Bu0=3

2 14216
) 12130 435
—~1=2 =1--2 =4

—2 448
12 4 53
=116 /53

In all these cases where the digits in the divisor are small the
Nikhilay: method is generally unsuitable; and the Pardvartya ons
is always to he preferred.

(6) Divide 13456 by 1123
1123 13 4 5 6
—-1-2-3 -1 -2-3
—2-4-6

12 0-240

Here, as the remainder portion is a negative quantity, we
should follow the device used in subtractions of larger numbers
from smaller ones in coinage etc.

Rs. as. ps. . % d
7 5 3 7 3 3
9 9 9 9

6 11 6 6 15 6

In other words, take 1 over from the quotient column to the
remainder column, i.e. take 1123 over to the right side, subtract
20 therefrom and say, Q=11 and R=1103

(7) Divide 13905 by 113 (similar)

113 1 390 5
—1-3 —-]1-3
—2 —6
—4—12
B B ST

1 2 '3 B8
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o AWAYS cemember that just as one Rupee—16 annas,
N2 AT shillings and one Dollar= 100 cents and so on,
aver from the quotient to the remainder—column
te value, for the divisor.

. 1012 11 L. 1 1
®) —— 0 —1-=2

g—1-2 y
0—1-2

11 0-2-1
-1 +10 I 2

One pounid:
so ONC taken

geands, 1M cOneTs

10 B

9 1133 1 2 3409

Ti—1-3 ~1 =3-3

g s A
B

11 —1-2+46=—114
—1 +1133

10 1019

(10) Divide 13998 by 112
112 1 39 9 ¢
-1-2 —-1-2
-2 -4
—5—10

1 25 0-1
=1411 2

1 2 4 11 1  Q=I24andR=111

(11) 1132 11 3 2 9  Alsoby Vilokanam, i.e.
-1=-3-2 =1 =3-=-2 mere observation.
000
0 009
(12) ) 1 @ 3 Also by Vilokanam, i.e. by
1-24.2 s S, mere observation.
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(13) () 819 2 3 @1
181 2 le& 2 This is by the Nilchifag,
A 703 method.

But 18 can be counted as 104-8 or as 20—~2. 8o, put 181 gq,
as 2—2+-1. We can thus avoid multiplication by big digits,
by more than five.

(if) 819 2 3 41

181 4 —442
2241 2 703
(14) Divide 39999 by 9819. Or (i) by Vinculum and Pardvariy,
() 9819 3 9 99 9 9819 39099 g
081 3 324 3 10321 0 6-6 3
3 1 0542 042-241 3 1 0542
0181 02—2+1
4 07123 4 013

(15) Divide 1111 by 839,
(i) 839 1 111 Or (i) But 839=134; and (fii) 839 1 111

161 161 161 =241 16l 2l
| (S 7 R 1341 1 11 1 2341 1 332
241 2-4 1 | 21
1 383 2
=1 272
(o) 818 5 0 by simple subtraction of the
182 5

1 2
40 10 divisor as in the case of 16
22

3 9 “annas, 20 shillings, 100 cents
=06 104 etc.

(I7) 988 13 0 4 5 (18 88 71 1 1
012 01 2 142 7 28 M
7w

0 3 § 7 1 105

13 2 0 1 142
_ L A

8 247 2

_.—.—'_._

(19
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(19) (i) 828 43 9 9 9 Or(ii) 828 43 & 9 9

172 428 8 172 8—12 8
7 49 14 3342 2233422
47 50 8 3 51 19—164-31
535 10 51 1 1771
5 0 4 3 - U 5+
i 52 043
33 11 5 — 828
53 115
(20) Divide 1771 by 828
(i) 828 1 771 Orgii) 828 1 7 7 1
172 172 172 2-342
1 943 2-342 1 9 4 3
— 828 8 3.8
2 115 2 115

(21) Divide 2671 by 828
()88 2 6 7 1 Or@iy 828 2 6 7 1

172 2 14 4 172 4— 614
2 1 015 2-342 2 1 0 1 5
172 : 2-342
3187 3 189

Or (iii) Subtract 828 straight off in both cases from 1015.
{22) Divide 39893 by 829
() %9 39 § 9 3 Or (if) 829 39 8 9 3

171 321 3 17T 6-943
12 84 12 2—3+1 30—-454-15
42 507 5 45 25 8§ 8
5355 4 —642
47 930 47 9 13 o
-829 -8 2 9

48 101 48 1 0 1
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(23) Divide 21011 by 799 (24) Divide 13045 by 953
799 21 0 1 1 988 13 0 4 5
201 4 0 2 012 0 1 2
10 0 5 3 6
25 1 036 13 D1
201
26 237
(25) Divide 21999 by 8819

G) 8819 21 9 9 9 Or(i) 88192 1999
1181 244412 TIST 2 2162
142-—2+1 24 3 6 1 4361

12

(26) Divide 1356 by 182 Even this is too cumbrous. Aruriigya
and Pardvartya will be more suitable.

Q) 182 13 5 6 (i) 182 13 5 6

—8-2 -8 -2 2)2-2+2 1-1
40 10 I—1+1 4—4

54 4 6 1-1 2)l4 8 2 NBR
—32—8 7 8 2 iscons

—~28—2 tant.

9 +34 (27 882 3 1 2 8

-2 118 3606

! 82 12-2 3 4 8 2

(28) Divide 4009 by 882

(i) 882 40 0 9 (i) gg? 40 O g
1-1-242 41.8—8 118 4T 3.,.1

L ; 4 8
1-+2-2 44 8 1 1122 i___'__,_.

C ik ST . SRR L RN T T — T _ e P e—
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6 9 9 (30) 2) 223 169 9
@) 220 o — 111 ~1-13
—3=3 —4—8 Ris =1=13 5T}
—22)24 1 1 constant. 2) 15 2}+13%
12R11 73 2% 13
7 111}
7 138
(31) 2) 222 1 2 3 4 (32) Divide 7685 by 672
B s 672 7 6 8 5
—-1-1 ~1-1 328 21421 =14
H1l 1 3 343-2 72 9 8§ 1
5 g 646 —4
5 124 9 1 6 43 7
3 +3-=2
10 9 6 5
-6 7 2
11 2 9 3

This work can be curtailed—or at least rendered a bit easier—
by the Anur@pyena Sitra. We can take 168 which is one-fourth
of 672 or 84 which is one-eighth of it or, better still, 112 which is
one-sixth thereof; and work it out with that divisor and finally
divide the quotient proportionately.

The division with 112 as divisor works out as follows :

1 672=6x112 76 85
. 2 -7 —14

=122 1+4+2

7-1 547

6) =69 —5+7

11} 517

—11 336 50 |- 7=203
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It will thus be seen that, in all such cases, a fairly cagy et
is for us to take the nearest multiple or sub-muitiple to 5 Power
of 10 as our temporary divisor, use the ..E"I;':.I‘kflffmﬂ or the Parz.
vartya process and then multiply or divide the quotient pre.
portionately. A few more examples are given below, in illysty,,

tion hereof:

(1) Divide 1400 by 199 Or (i) Since 3¢ 199 =995
(i) 199 140 0 l}“i 1 409
2)20—1 0% 0035 005
1+0—} 042 1 405
0+ 214 342 X5-393

7 442=77 7 7

(2) Divide 1699 by 223. (3) Divide 1334 by 439
"4 %223 =892 *+2%x439=8T78

892 1 6 9 9 . 878 1 334
1-1-142 14+1-2 T 122 122
1+1-2 1 8 0 7 1 456
X4—6 6 9 x2—-4 39

4 1 3 8§ 117

+3
7 1 3 8
*+ 255111022 2% 516=1032
S 0=2—2 0—2-2 “0=3=3 0—3—2
12 1 2 L1 % 3
%2 %2

e e

Note: The remainder is constant in all the cases.
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Argumental Division

By sivMPLE ARGUMENT PER THE UrDiva TIRYAK STUTRA

In addition to the Nikhilarit method and the Pardvartya method
which are of use only in certain special cases there is a third
method of division which is one of simple argumentation based
on the ‘Ordhva Tiryak' Sitra and practically amounts to a con-
verse thereof.

The following examples will explain and illustrate it:

(1) Suppose we have to divide (x*+2x+1) by
(x+4-1), we make a chart, as in the case of an ordinary x 4 1
multiplication (by the ‘Ordhva Tiryak' process) and X 4 1
got down the dividend and the divisor. Then the xF+2x+1
argumentation is as follows:

(/) x* and x being the first terms of the dividend and the divisor
or the product and the multiplicand respectively, the first
term of the quotient or the multiplier must be x.

(i) As for the coefficient of x in the product, it must come up as
the sum of the cross-wise-multiplication-products of these.
We have already got x by the cross-multiplication of x in the
upper row and 1in the lower row,; but the coefficient of x in
the product is 2. The other x must therefore be the product
of x in the lower row and the absolute term in the upper row.
+ The latter is 1. And thus is quotient is x-+1.

(2) Divide (12x*—8x—32) by (x—2).
12x2—8x—32

X—2
() 12x* divided by x gives us 12x.

= 12x--16
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(if) The twelve M
the actual coe
dividend i5—
plying the X of the
divisor must be 16 .
S R= 0.

Divide (x84 7x24-6x+43) by (x- 2}
{Si:j X div;;dcd by x gives us x* which is x34-Tx24+6x+5
{herefore the first term of the quotient. x—2
s Q=xt..,

(if) X2 % —2=—2x%; but we have 7x* in the dividend. This means
that we have to get 9x® more. This must result from the
multiplication of x by 9x. Hence the second term of the

ultiplied by — 2 gives us —24:but Q= 12x

; 1 o duct or the
flicient of x1n the pro = |
g + We must get the remaining 16X by multj.

divisor by 16. . The absolute term in the
Q=12x+ 16. And as —2X 16= —32

divisor must be 9x.
3 £ 1 ]
: +THEEHT5 SQ=x"49x4 ...
(iif) As for the third term, we alrcady have — 2% 9x— — I8x. But

we have 6x in the dividend. We must therefore get an addi-
tional 24x. This can only come in by the multiplication of x
by 24. . This is the third term of the quotient.
5Q=x*4+9x 124

(iv) Now this last term of the quotient multiplied by —2 gives
us —48. But the absolute term in the dividend is 5. We have
therefore to get an additional 53 from somewhere. But there
is no further term left in the dividend. This means that the
;3 1.;1311 remain as the remainder. ., Q—=x24-9x4-24; and

Note: All the work explained in detail above can be easily per
:‘Erf;fd .];j.f means of the ‘Par@vartya’ Siitra as already expla.iﬂﬂd
e ‘Pardvartya’ chapter, in conneeti i fyision

by Binomial divisors. on with Mental divi
The procedure is very simple; and the following examples wil

throw further light th ; ;
student: eit tereon and give the necessary practice 10

x4+ 7x2 4 9x 411

I .
() —F———.Q=x"49x427; and R = 65

e A e R T i
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x§_313+?xﬂ_|_5x+? 9
x—4 Q= X424 11x4-49; and R — 203
—4x*4+-9x% 1 Ox— |2
2x—4 S Q= ~2x24-1x 451 and R= 10
Ix*—x—35
() =7+ Q=x+2;and R=9
16x*4-8x1-1
xi—4x2412x—9
(7) X— 2513 N.B.: Put zero coefficients for absent

%)

(4)

£Q=xti2x—3;andR=0
*x3 4 2x% 4 3x4-5

®) —g——1 --Qrx+3;and R=7x+8

PRI LN SO S _

x4 2304 I3 2x4-1
1 % = k) —
(10 = s S Q=X"4+x+1;and R=0

4__ w3 .
{11}1 : Eif}:_l_ﬂ s Q=x244; and R =949

4 ¥ 2
(19 EE :f;ff”ﬁ -.Q=6x24-25x+143; and

d__ F_ el
12xt—3x%—3x lzl.lqnuﬂ..j.x—ﬂ;ﬂndﬂ.—ﬂ

x24-1

12x8 1 41x3 81 x2 1 79x4-42
(14) ZHHJ{E:-:L;L X2 5 Qe 4x24-Tx+6; and R=0

(13)

xt—dx24-12x-9
(15) F1x—3 r Q=x—2x43and R=0

12x0-3x0=3x—12 _ 4.
(16) —5m—5=13 +1;and R=0

an ]114+4lx:;iliz;i;9x+42 T A R

x—dxt L 12x—9
(18) ) =x24-2%—3 and R=0

2x34-9x%-18x+20
(19 e e cand R=0
) %5 x4-2x-4-4; an
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(20) 2x34-9x2 1 18x +20

w 2X+4-5;and R.=0

X2 4-2x14
@1 Gxta-1 3:;3 ;ii; i_-i-;?x—h-:lﬁ —2x* 4 3x4-5;and R=0
(22) el 31:5;:—7_9;:12?x+45 =3x24+2x+9and R=0
(23) Iﬁzijjgizm =4x2—6x+-9; and R=0
(24) Iﬁ::;'__jgi?f : =4 L 6x1-9:and R=0
(25) mﬂ:ﬁﬁf}:ﬁ"“ —4x2—2x-+-9; and R=0
(29) lﬁﬂjiﬁfitf ; 2 420415 and R0
27) i:f;: _Exti —x*4-2x+3; and R = — 2x*+418
8y L& Lﬁi‘;ﬁ;”' B 4% 6x19: anid Rm 6515
29) — 25— ?J{‘;E:fg;lgflx“—h;— 8 . —2xf—11x—20:

and R == —20x*4+-8x 412

KA 3— 1650 3x-+1 >
+ e anlie =%*—3x-+1;and R=0

x2Lbx4-1
x4 3 —10x24-3x4-1
xt=3x-41

X5 —Ox? 4 5x%-16x% — 16x-4-36 .
2x*—3x 41 =Xi=dxte2hx 13

and R =33x+30

(30)

(31) ~X*4-6x+1; and R=0

(32) %

(33) 21x8 4T+ 15x4 42953 4-x* - 15x -3

T+ 5x-4-1 =B
2Ix64L-Tx5 4 15x8 42953 L x2 1 15x+-3
(39 T3 £ T Sxt

(33)

TxXV0L 26x- L 33x84- 567+ 43x5 - 40x54-4 1 x4 1-38x7+ 19::’4:%}:'.‘5:
XO4-3x 1533 - 3x2 X+ 1 PR, o

— x5 1.3 AT

(Same dividend as above e

(36)

8 1 .4 1 7 ——— =I*-I-3:"-;—51'3—|—3xﬂ-]—ﬂ—:'l
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LINKING NOTE

RECAPITULATION AND CONCLUSION OF (ELEMENTARY)
Division SeEcTioN

In chapters Four, Five and Six relating to division, we have dealt
with a large number and variety of instructive examples and we
now feel justified in postulating thz following conclusions:

(1) The three methods expounded and explained are, no doubt,
free from the big handicap which the current system labours
under, namely, (i) the multiplication of large numbers (the Divi-
sors) by “trial digits” of th: quotient at every step with the
chance of the product being found too big for the dividend and
so on, (if) the subtraction of large numbers from large numbers,
(fif) the length, cumbrousness, clumsiness etc., of the whole pro-
cedure, (v} the consequent liability of the student to get disgus-
ted with and become sick of it all, (v) the resultant risk of errors
being committed and so on;

(2) And yet, although cemparativelp superior to the process
now in vogue everywhere, yet, they too suffer, insome cases, from
these disadvantages. At any rate, they do not, in such cases,
conform to the Vedic system's ideal of “Short and Sweet™;

(3) And, besides, all threz of th>m arz suitable only for some
special and particular type or types of cases; and none of them 1s
suitable for general application to all cases:

(i) The *Nikhilair m=thod is gzn:rally unsuitable for Algebraic
divisions; and almost invariably, the ‘Paravariya’ process
suits them better;

(ii) and, even as regards Arithmsatical computations, the s Nikhi-
Jarit® method is serviczable only whzn the divisor-digits are
large numbers, i.e. 6, 7, 8 or 9 and not at all helpful when
the divisor digits arc small ones, i.e. 1, 2, 3. 4and 5; and it is
only the ‘Paravartyd’ method that can be applied in the
latter kind of cases!

(fii) Even when a convenient multiple (or sub-multiple) is made
use of, there is room for a choice having to be made—by the
pupil—as to whether the -Nikhilam’ method or the *Pard-
vartya’ one should be preferred:
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(iv) and there is no exception-less criterion by which the studep,
can make the requisite final choice between the two alter.
native methods; _

(+) and, as, for the third method, 1. by the r“":wmﬂ_d *Utrdhye.
Tiryak® Siitra, the Algebraic utility thereof is plain enough;
but it is difficult in respect of Arithmetical cﬂlculntluna‘ to
say when, where and why it should be resorted to as against
the other two methods.

All these considerations arising from our detailed-comparative
study of a large number of examples add up, In effect, to the
simple conclusion that none of these methods can be of general
utility in alf cases, that the selection of the most suitable method
in each particular case may owing to want of uniformity be con-
fusing to the student and that this element of uncertainty is
bound to cause confusion. And the question therefore naturally
—nay, unavoidably arises as to whether the Vedic Sifras can
give us a General Formula applicable to all cases.

And the answer is—Yes, most certainly Yes! There is a
splendid and beautiful and very easy method which confo
with the Vedic ideal of ideal simplicity all-round and whi rms
fact gives us what we have been describing ag Sy W lﬂh.m
mental answers” ! edic one-line

This astounding method we shall, howeyer
chapter under the caption *Stmight-]}ivfsi
the crowning beauties of the Vedic matp,
Twenty-seven. q.v.).

» ©Xpound in g Jater

0 1:_____ = )
Emat]?h Which is one of
1C5 Siitrgg. (Chapter



SEVEN

—

1. Factorisation

FACTORISATION OF SIMPLE QUADRATICS

Factorisation comes in naturally at this peoint, as a form of
what we have called “Reversed multiplication” and as a parti-
cular application of division. There is a lot of good material in
the Vedic Siitras on this subject too, which is #ew to the modern
mathematical world but which comes in at a very early stage in
our Vedic Mathematics.

We do not, however, proposc to go into a detailed and exhaus-
tive exposition of the subject but shall content ourselves with a
few simple sample examples which will serve to throw light
thereon and especially on the Sitraic technique by which a Sitra
consisting of only one or two simple words, makes comprehensive
provision for explaining and elucidating a procedure whereby a
so-called “difficult” mathematical problem which, in the other
system puzzles the students’ brains ceases to do so nay, is
actually laughed at by them as being worth rejoicing over and
not worrying over!

For instance, let us take the question of factorisation ofa
quadratic expression into its component binomial factors. When
the coefficient of x2is 1, it is easy enough, even according to the
current system wherein you are asked to think out and find two
numbers whose algebraic total is the middle coefficient and whose
product is the absolute term. For example, let the quadratic
expression in question be X2+ 7x-4-10; we mentally do the multi-
plication of the two factors (x-+2) and (x+4-5) whose x+2
product is x*+7x4-10; and by a mental process of x5
reversing thereof, we think of 2 and 5 whose sum is  x247x<4-1V
T and whose product is 10: and we thus factorise
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(x24Tx-+10) into (x-+2)and (x--5). And the actua) Wor
thereof is as follows:

X2 7x--10

— x2-2x--5x4-10

=x(x+2)4-5 (x+4-2)

= (x+2)(x+>5)
The procedure is, no doubt, mathematically correct: but the
process is needlessly long and cumbrous. However, as the mentg)
process actually employed is as explained above, there is no gregt
harm done. :

In respect, however, of quadratic expressions whose first co.
efficient is not unity, e.g. 2x%+4-5x4-2, the students do not follow
the mental process in question but helplessly depend on the
4-step method shown above and work it out as follows :

2x21-5x -2

= 2x¥-4x+x+2

=2x(x+2)+1{(x+2)

=(X+2) (2x+1)
As the pupils are never taught to apply the mental process which
can give us this result immediately, it means a real harm. The
Vedic system, however, prevents this kind of harm, with the aid °
of two small sub-Sitras which say (1) mEsgw (Anuripyena)
and (i) ARMEATYTEE {Jﬁymﬁdyenz%:ryamanryenﬁ] and
which mean ‘proportionately’ and ‘the first by the first and the
last by the last’.

The f[:l-l'l'flﬂl‘ has been explained already in connection with the
use of multiples and sub-multiples, in multiplication and division;
but, ?lnngﬁjde of the.iau:'er sub-Siitra, it dcquires a npew and
beautiful double application and significance ang works out as

(#) Split the middle coefficient into two such paris that the ratio
of the first coefficient to that first part ig the sam . e Ta .
of that second part to the last coefficient. T, € as the ratio
ratic 2x*+5x4-2, the middle us, in the quad-

term 5 jg S
parts 4 and 1 that the ratio of Split

the first co a
part of the middle coeflicient, j.c. 2 - ;Tgltegt* tul thcfﬁ;;rst
¢ tatio of the

second part to the last coefficient, i.p, 24
this ratio, i.e. x+2 is one factor. T¢ the same. Now,
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{if) And the second factor 15 _-::h-t&ined by dividing the first co-
efficicnt of the quadratic by the first coefficient of the factor
already found and the last coefficient of the quadratic by the
Jast coefficient of that factor. In other words the second
Binomial factor is obtained thus: %H—:—!- %’ = 2x4-1

Thus we say: 2x24-5x+2=(x4+2) 2x+1).

Note: The middle coefficient [which we split up aboveinto
{4-+1)] may also be split up into 1--4, that the ratio in that case is
2x+1 and that the other Binomial factor according to the above-
explained method is x42. Thus, the change of sequence in the
splitting up of the middle term makes no difference to the factors
themselves!

This sub-S#ifra has actually been used already in the chapters
on division; and it will come up again and again, later on, i.e.in
Co-ordinate Geometry etc., in connection with straight lines,
Hyperbolas, Conjugate Hyperbolas, Asymptotes ete.

But, just now, we make use of it in connection with the
factorisation of gquadratics into their Binomial factors. The
following additional examples will be found useful:

(1) 2x¥+-5x—3 =(x4+3)(Ix—1)
(2) 2x24T7x45 =(x41) (2x-+35)
(3) 2x24-9x-+10 = (x+2) (2x+5)
(4) 2x2—5x—~3 = (x—3) 2x+1)
(3) Ix4-x—14 =(x-2)(3x-+7)
(6) 3x24+13x—30=(x16) (3x—13)
(M 3x*~M+2 ={x—2)(3x-1)
(8) 4xi+12x+5 =(2x+1) (2x+5)
(9) 6x*+11x+3 =(2x+3) B3x+1)
(10) 6x2+11x—10=(2x+5) (3x=2)
(11) 6x3+13x+6 =(2x-+3) (3x+2)
(12) 6x2—13x—19= (x4-1) (6x—19)
(13) 6x*+3T7x+6 =(x+6) (6x+1)
(14) TxF—bx—1 =(x—1) (Tx+1)
(15) 8x*—22x+5 = (2x—15) (4x—1)
(16) 9x2—15x+4 =(3x—1) (3x—4)
(17) 12x24+13x—4 = (3x-1-4) (4x— 1)
(18) 12x2—23xy+10y2= (3x—2y) (4x—5y)
(19) 15x*— ldxy—8y* =(3x—4y) (5x+2y)
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An additional sub-Siitra is of immense utility in this Context,
for the purpose of verifying the correciness of our ﬂﬂﬁwr:rs
in multiplications, divisions and factorisations. Tt  reads.

‘TﬁTﬁH‘E_ﬂl.TT' Eg“%‘ﬁﬂﬁm‘- and means:
““The product of the sum of the coefficients in the factors i
equal to the sum of the coefficients in the product™.
Tn symbols, we may put this principle down thus:
S. of the product=Product of the S (in the factors).
For example, (x+47) (x49) = (x2+16x+63);
and we observe that (14-7) (149)=14-16-63=80

Similarly, in the case of Cubics, Bi-quadratics etc., the same
rule holds good. For example:

(x+41) (x~+2) (x+3) = x*4-6x24-11x+4-6;
and we observe that 2x3x4=1161111L6—

Thus, if and when some factors are known, this rule helps us
to fill in the gaps.

1t will be found useful in the fact::msatmn
dratics etc., and will be discussed in that
ather such contexts later on.

of cubics, biqua-
context and in some
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II. Factorisation

FACTORISATION OF “HARDER QUADRATICS

There is a class of quadratic expressions known as Homogenc-
ous Expressions of the second degree, wherein several letters X,
y, 7 cte. figure and which are generally fought shy of by 5'-”'11’3'_“5
and teachers as being too “difficult™ but which can be very casily
tackled by means of the Adyamddyena Sitra just explained and
another sub-Siirra which consists of only one compound word,
which reads ®igazgroareai and means: “by Alternate Elimination
and Retention™.

Suppose we have to factorise the Homogeneous quadratic
2x2L 6yt 3224 Txy+11yz-+Tzx. This is obviously a casein which
the rtatios of the coefficients of the various powers of the various
letters are difficult to find out: and the reluctance of students to
go into a troublesome thing like this, is quite understandable.

The ‘Lopana-Sthiapana’ sub-Siitra, however, removes the
whole difficulty and makes the factorisation of a quadratic of
this type as easy and simple as that of the ordinary gquadratic
already explained. The procedure is as follows:

Suppose we have to factorise the following long quadratic:

2xeL6yi4-3z24-Txy+11yz+Tzx.

() We first eliminate z by putting 2=0 and retain only x and y
and factorise the resulting ordinary quadratic in x and y with the
Adyam Siitra;

(if) we then similarly eliminate y and retain only x and z and
factorise the simple quadratic in x and z;

(iify with these two sets of factors before us, we fillin the gaps
caused by our own deliberate elimination of z and v respectively.
And that gives us the real factors of the given long expression.
The procedure is an arpumentative one and is as follows:
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If z=0, then E (the given expression) = 312+713+ﬁ}ra
= (x+2y) (2x+3y
Similarly, if y=0, then E=2x*-+7xz+32*= (x4 -3z) (2x4-7)
- Filling in the gaps which we curselves had created p
ing out z and y, we say: E=(x+2y+32) (2x+3y-+z)
The following additional ecxamples will be found usefy].
(1) 3x4y*— 228 —Axy—yz—ZX
E=(x—v) (3x—7y) and also (x—z) (3x+2z)
S E=(x—y~-2) 3x—y-+22)
(2) 3x:xy— 2y 19xz4+282% 4 Fxw — 30w — yz-+- 19wy L 46
By eliminating two letters at a time, we get:
E=(x-+y) (3x—2y), (x-42) (3x-72) and alse
(x —2w)(3x+15w)
SE={x+y+4z—2w) (3x—2y+Tz+15w)
(3) 2x24-2y2 4 Sxy+-2x—5y— 12=(x+3) (2x—4) and
alse (2y+3) (y—4)
S E=(X42y+3) 2x+y—4)
(4) 3x*+8xy-4y*+4y—3=(x—1) (3x-+-3) and also
(2y=1) @y+3)
SE=(Xx+2y—1) (3x4+2y+3)
(3) 6x*— By®— 62"+ 2xy + 16yz-5xz
=(2x—2y) (3x+4y) and also (2x-+32) (3x—22)
S E=(2x—2y+4 3z) (3x+4y—22)
Note: We_muld have climinated x also and retained only y and
; ;I;S ‘f::h;r;iad l!1e resultant Eimlf’]:"*" quadratic. That would not,
howeer, bave v v anyadional e bt would
Thus, when 3 Ittte::n o the answer we had already .::btmn_md-
' X, ¥ and z are there, only two eliminations

will \ : . ‘
be HE:;E‘:' H]]}F suffice. The followin g exceptions to this rule sh nuld

(1) x*+xy—2y24+-2x7— Jyz— 3zt

= (X~¥) (x+2y) and (x— Z) (x+4-3z)

But x is to be found ;
e in all the terms - and : ans for
deciding the proper co mbinations, g

In this case, the
’ » therefore, x tog ma - Z
retained. By so doing, we haye - ¥ be eliminated; and y and

Ee -2y Syz_ 3,0,
_ =(=y<2
Ry {x—y-z} {x+2}r+3:].

¥ leay.

) (2y+3z)
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or, avoid the <% which gives the same co-efficient and take only
s or z& And then, the confusion caused by the oneness of the
“oefficient in all the 4 factors is avoided; and we get,

E=(x—y—2) (x+2y+3z) (as before).

(2) xﬁ'+2y1-i—3:-:3'+2}:z+31fz+z=
(i) By eliminating 2, ¥ and x one after another,
we have E=(x+y+2) (x+2y+2)
or (i) By y or z both times, we gel the same answer.

(3) x2+3y? 4228+ 4xy+3xz+Ty2
Both the methods yield the same result:
E=(x-+y+2z) (x+3y+2)

(4) 32+ Txy+2y 11xz-Tyz+622414x+-8y+14z+ 8.

Here too, We can eliminate two Jetters at a time and thus keep
only one letter and the independent term, each time.

Thus, E=3x24 14x-+8=(x+4) (3x+2);
2y2L-8y+8=(2Zy+4) (y—2); and also
6224 14z-+8=(3z-+4) (2z2+2)

~E = (x4+2y+3z+4) (3x+y+2z+32)

Note: This **Lopana-Sthapana” method of alternate elimi-
pation and retenticn will be found highly useful, later on in
H.C.F., in Solid Geometry and in Co-ordinate Geometry of the
straight line, the Hyperbola, the Conjugate Hyperbola, the
Asymptotes etc.
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111. Factorisation of Cubics etc.

By SIMPLE ARGUMENTATION

We have already seen how, when a polynomial is divided by a
binomial, a trinomial etc., the remainder- can be found by means
of the remainder theorem and how both the quotient and the
remainder can be easily found by one or other method of division
explained already.

From this it follows that, if, in this process, the remainder is
found to be zero, it means that the given dividend.is divisible by
the given divisor, i.e. the divisor is a factor of the dividend.

And this means that, if, by some such method, we are able to
find out a certain factor of ‘a given expression, the remaining
factor or the product of all the remaining factors can be obtain-
ed by simple division of the expression in question by the factor
already found out by some method of division. (In this context,
the student need hardly be reminded that, in all Algebraic divi-
sions, the ‘Pardvartya’ method is always to be preferred to the
*‘Nikhilarii’ method).

Applying this principle to the case of a cubic, we may say that,
if, by the remainder theorem or otherwise, we know one binomial
factor of a cubic, simple division by that factor will suffice to
enable us to find out the quadratic which is the product of the
remaining two binomial factors. And these two can be obtained
by the ‘ddyamddyena’ method of factorisation already explained.

A simpler and easier device for performing this operation will
be to write down the first and the last terms by the ‘ ddyvamdadyena’
method and the middle term with the aid of the Gunita-Samuc-
caya rule, i.e. the principle—already explained with regard to the
Se of the product being the same as the product of the S, of the
factors.
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Let us take a concrete example and see hn}ar this methgq i
be made use of. Suppose we have to factorise x*4-6x24 17, b
and that, by some method, we know (x+1) to be a factor, y,
first use the Adyamadyena formula and thus mechanically p,,
down x2and 6 as the first and the last coefficients in the quotien
i.e. the product of the remaining two hinﬂn"{ial _facmm But w,
know already that the S, of the given expression is 24; and, 25 the
8¢ of (x+1)=2 we therefore know that :ihE Se of the quotien
must be 12, And as the first and last digits thereof are already
known to be 1 and 6, their total is 7. And therefore the midde
term must be 12—7=5. So, the quotient is X*-+5x-+6.

Thisis a very simple and casy but absolutely certain and
effective process.

The student will remember that the ordinary rule for divisibi-
lity of a dividend by a divisor as has been explained already in
the section dealing with the “remainder theorem™ is as follows:

FE-DQ+R,if D=x—pand if x=p, then E—=R.

CoOROLLARIES

() So, if, in the dividend, we substitute 1 for x, the result will
be that, as all the powers of 1 are unity itself, the dividend will
now consist of the sum of all the coefiicients.

Thus, if D is x— 1, R=a+b+-c-+d+(where a, b, ¢, d etc., are
the successive coefficients); and then, if

ents), ¢ +Tbh4-cete., =0, it will
mean that as R=0, E is divisible by D. Injother words, x—1lisa
factor. J

(if) If, however, D=x+1 and if we substit
then, inasmuch as the odd powers of—
even powers thereof will all be 1, therefa
this case, R=a—b-4+c—d etc.

So, if R=0,ie.ifa—b+c—d etc., =0, i.e. j

=0,ie.at+cd ... =b4d+ ...
i.e. if the sum of the ceefficients of the ad
sum of the coefficients of the
will be a factor.

The following few illustrations will elucidate the actual gy
cation of the principle mainly by what may be called the Aﬁzﬂ'

Ute —1 for x inE,
1will all be —1 gnd the

re 1t will follow that, in

d powers of x

a
even powers be equal, T the

then x4 1



mentation method, based on the simple multiplication formula
to the effect that—
(x-+1) (b)Y (x-+€) = X¥-x2 (a-k-b-t¢)-F-x (ab+-ae-|-be)-abe,
as follows:

(1) Factorise x3--6x2--11x--6
(i) Here, Se=24; and t, (the last term) is 6 whose fuctors
arc 1,2, 3 or 1, 1, 6. But their total should be 6 (the
coefficient of x%). So we must reject the 1, 1, 6 group and
accept the 1, 2, 3 group. And, testing for the third co-
efficient, we find ab+be-ca=11
S E=(x41) (x+2) (x+3).
or (ii) So (the sum of the coefficients of {the odd powers) = 1411
—12; and S, (the sum of the coefficients of the even
powers)=06-46=12. And as So=25e
..x-+11is a factor.
. Dividing E by that factor, we first use the ‘Adyamad-
yena® Siitra and put down 1 and 6 as the first and the last
coefficients. . The middle coefficient is 12— (14-6)=23.
. The QO=x215x+6 which (by Advamadyvena)=(x+2)
(x+43).
Thus E=(x-+1) (x4-2) (x+3).

(2) Factorise x*—6x*+11x—6
Here Se=0 ,.x—1is a factor. But as § is an indefinite figure,
we cannot use the Gunita-Samuccaya method here for the
middle term but must divide out by mental-‘Paravartya’ and
get the quotient as x2— 5x+6 which by the Adyamadya’ rule
=(x—-2) (x—3) SE=x-1(E-2) x—3).

ot (ii) argue about — 1, —2 and — 3 having—6 as the total and

—6 as the product; and test out and verify the 11. And

therefore say, E=(x—1) (x—2) (x—3).

(3) Factorise x*-12x2-+-44x1-48.
(i) Here S¢ = 105 whose factors are 1,3,5 7, 15, 21, 35 and
105. And t, is 48 whose factors are 1,2,3.4,6 8 12 15
24 and 48. . x--1 and x—1 arc out of court. And the
only possible factors are x-+2, x-+4 and x--6 (verify).
or (ii) argue that 2--4+46=12 and 2::{4xf=48; and test for

m e doa W
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(4) Factorise X’ —2X*~ 23x+60
(f) Here §, =36 (with factors 1, 2, 3,4, 6, 9, 12,
t, == 60 (which is 1 % 2% 2X3%J)
-+ Possible factors are 1,2, 3 4,5,6,10, 12, 15, 20, 30 =
60. But the sum of the coefficients in each factor myg b
a factor of the total Se (i.e- 36). Therefore, all the italic;,
ed numbers go out, and so do X—1, X+4, x+6 and x1
Now, the only possible numbers here which when addeq
total —2 are —3, —4 and 5. Now, test for and verify x—
SE=(x—3) (x24+x—20) = (x—3) (x—4) (x+3)
or (if)take the possibilities x—10, x—35, x+5, x—4, x+3
X—3, x+2 and x-2.
Ifx—2 x¥—2x*—23x-460
2+ 0—46

1-440-23 14 SR
~.X—2 15 not a factor.
Butifx—3, R=0 ;. x—3 iy a factor.
Then, argue as in the first method.

(5) Factorise x*—2x*— x-+-6. Here 8¢ =0

(f} Sx—1 15 a factor; and the other part Ao ’
x*—x—6 which =(x4-2) (x=3) Rt by N ¥
SE=(x-1) x+2) (x—3)

(fi) t,=6 (whose factors age 1. 2
. . v and 3y, A .
nation ?fhxch gives us the totg] TES}iE _1:1*;1 tg-: u;l;-,r combi-
and verify for — 5. And put down tl]ﬂ anﬂ;rel.au — 3. Test
(6) Factorise x34-3x2— | Tx— 38 ' .

Now Se = — 51 (with factors

-1, :
And — 38 has the factors i]:i i;’i’fg‘ 17 and:&ﬁl}
2. %1, £19 and 38 are not pﬂasibfd +38.

And -::-n_Ijr +2 is possible. And if Kee — 2
S x-+21s afactor ~E= (x+z;|. (X2 — IS‘R =h!
which has no further factors. )

(7) Factorise x*+4-8x2-}-19x-12,

(7) Here Sc=40; and Li=12 1434
bers. Now test for and verify 19, e ths PToper num-
LA =i TR I T T iy U B LW S T T

18 ang 3,

14
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i .'.H_[gsﬂ—i-]z Sox41 isil factor. Then the quotient is
or (1) obtainable by the ‘ddyamddyena’ and ‘Samuccaya’ Siitras.
And that again can be factorised with the aid of the

former.

- E=(x+1) (x+3) (x+4)

(8) Factorise x*—7x+6 1
(i) "> Se=0, ..X—1 is a factor.
. By “Paravartya’ method of division (mental),
E=(x—1) X*+x—06)=x~1) (x—2) (x+3)
or (i) (by a different kind of application of ddyamidyena)
X3—Tx4+6=x*-1)—7Tx4+7=(x—1) x>+x+1-7)
=(x—=1) (x—2) (x+3)

Note: (1) This method is always applicable when x2 is absent;
and this means that the three independent terms together total
ZETO.

(2) Note the note on this and other allied points in the section
relating to cubic equations in a later chapter.

(3) Note that this method of factorisation by Argumentation
is equally applicable to biquadratics also.

(4) The relationship between the binomial factors of a poly-
nomial and its differentials first, second and so onis an interest-
ing and intriguing subject which will be dealt within a later

chapter. |
(5) The use of differentials for finding out repeated factors will

also be dealt with later.



TEN

Highest Common Factor

In the current system of mathematics, we have two methods
which are used for finding the H.C.F. of two or more given ex-
pressions.

The first is by means of factorisation which is not always easy;
and the second is by a process of continuous division like the
method used in the G.C.M. chapter of Arithmetic. The latter is a
mechanical process and can therefore be applied in all cases. But
it is rather oo mechanical and, consequently, long and cumbrous.

The Vedic method provides a third method which is applicable
to all cases and is, at the same time, free from this disadvantape.

It is, mainly, an application of the ‘Lopana-Sihapana' Siitra,
the ‘Sankalana-Vyavakalan' process and the ‘ddyvamadva’ rule.
The procedure adopted is one of alternate destruction of the
highest and the lowest powers by a suitable multiplication of the
coefficients and the addition or subtraction of the multiples. A
concrete example will elucidate the process;

(1) Suppose we have to find the H.C.F. of (x2+ 7x--6) and
(x*—5x—6)
(f) x2+ Tx+4-6=(x+1) (x+6); and x2—5x—6=(x+1) (x—6)
.. The H.C.F.is (x+1).
(7) The second method the G.C.M. one is well-known and
need not be put down here. _
(i) The third process of ‘Lopana-Sthapana’, i-e. of Elimination
and Retention, or Alternate destruction of the highest and
the lowest powers is explained below: :
Let E, and E, be the two expressions. Then. for destroying
the highest power, we should subtract E, from E;; and for
destroying the lowest one. we should add the two. The
chart is as follows:
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X%+ Tx+-6 . ;;2—51.—!5} dditi
:-:E—jx—ﬁ} Subtraction WL Tx 46 Addition
12) 12x+-12 2x) 2x+2x

x-t-1 x+1

We then remove the common factor if any from each; and we
find x--1 staring us in the face.
* x+1isthe HC.F.
The Algebruical principle or proof herenf is as follows:
Let P and Q be the two expressions; H their H.C.F. and A and
B the quotients after their division by the H.C.F.

F A and %=B . P=HA and Q=HB

rr—— =
E ¥

. P+Q=H (A1B); and MPENQ=H (MALNB)
+ The H.C.F. of P and Q is also the H.C.F.of P40Q,

2P4-Q, P4-2Q and MPLNQ
All that we have therefore to do is to select our M and N in

such a way that the highest and the lowest powers are removed
and the H.C.E. appears and shows itself before us.
A few more illustrative examples may be seen below:

(1) (i) x3—3x2—dx+12=(x+2) (x—2) (x— 3);
and x3— Tx?-F16x—12=(x—2)* (x—3)
-, the H.C.F.is (x—2) (x—3)=x*—5x+6
But the factorisation of the two expressions will be required.
or (i) The G.C.M. method.
or (i) The ‘Lopana-Sthipana® method :
x1—3x?—4x412 x#—Txt4-16x—12
—(x¥=Tx16x—12)  +0(-3x*—4x+12)
4) 4x%— 20x--24 2x) 2x*— 10x2+12x
X2 5x4-6 X2— 5x+6

.. The H.C.F.is (x*— 5x+4-6)

(2) (1) 4x3+ 13x3- 19x 44 = (dx 4 1) (k2L Ix+-4);

and 2x7+5x*+5x—4=(2x+1) (x2+3x+4)

». The H.C.F. is x®43x14

But the factorisation of the iwo cubics will be cumbrous-
or (if) The G.C.M. method.
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99
or (iif) The Vedic method:
dx3+4-13x2--19x+4 2%+ 5x24-5x — 4
— (4x* 4 10x2+ 10x—8) F(4x4- 13524 10y L4
3) 3x24-9x4-12 _ 6x) 6x74-18x24-24x
x2+3x+4 X*4-3x-+4

.. The H.C.F. is (x*+4-3x +4)

(3) (f) X8 4-x3=5x2—3x+-2=(x+1) (x—2) (x24-2x— D;
and x%—3x+x*43x - 2=(x+1) (x—2) (x— 1)?
. The H.C.F.is x*—x-2
But this factorisation of the two bi quadratics is bound to
be a comparatively laborious process.
(#) The cumbrous G.C.M. method.
(ifi) The Vedic method:
x4 x3— 5x2—3x4-2

X4—3x34-x24-3x— 2
—(x*—3x3+ x*43x-2)

X x3— Sx2—3x4-2

2) 4x3— 6x2— 6x+-4 2x%) 2x'— 25— dx?
2x3—3x2—3x4-2 xS
—(2x3—2x2—4y) (N.B. multiply this by 2x and
=1l (—=x*4+x+2) take it over to the left
. X-x-2 for subtraction.)
s The H.C.F. js x2—x—?
(4) (/) The Vedic method
6xt— TxI—5x%y 14x17 33— 5x2+17
— (6x%— [0y +14x) (N.8. multiply this by 2x and
3X3— 5x2 +7 subtract from L.H.5.)

(ii) The factorisation of the big biquadratic will be ““harder™.
(iff) The G.C.M. method is, in this case, easy. But how should
one know this beforehand and start monkeying or experi-
menting with it?
(5) () The Vedic method:

Gx'— 11x316x2— 22x+8  6x*—1Ix?—8x*+22x—8
—(6x*—11x"— 8x24-22x—8) -+(6x'— 11+ 16x*—22x+8)
&) 24 —dax+16 2xf) 12x%— 22x7-+8x*

6x2— L1x+4 6x*—1x +4
. The H.C.F.is 6x*— | Ix+4
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(if) Gxd—11x74-16x*— 29x+-8=(2x—1) (3x—4) (x*+-2); and
Gxi—11x3—§xi4-22x— 8= (2x—1) (3x—4) (x2=2)
» The H.C.F.is (2x—1) 3x—4) = Gxt—1lx4-4
(iii) The cumbersome G.C.M. method.
(6) (1) 2x34x2—9=(2x—13) (x2+2x-3);
and x4 2x34-9 = (2 +2x+3) (x*— 2x+ 3)
* The H.C.F. is x3++2x-3
But the factorisation-work especially of the former expression
will be a tough job.
(if) The G.C.M. method will be cumbrous as usual.

(iii) The Vedic method
2kt xi—0 2xd-4x24-18
xt4-2x2+-9 2x84x3—0x
x%) x84 2x34-3x® wW—4x2—-0x—18
i I o ¥3+4-2x24-3x
—6) —6x*—12x—18
N.B. As this has no further x4 2x4-3

factors, it must be in - The H.C.F. is x*+2x+3
the R.H.5. Multiply

it by x and take 1t

over to the right for

subtraction.-

(?J {Ej 4}.;4_[_111{3_1_2?13.{.[??:.'_ 5 EII'EI 3}:4_!_ T.HF“{‘IE}{’{- Tl"i‘-'-i

2 123843353 4-BIx2 - 51x+15 dxi+ 113 4-2Tx2 - 17x4-5
1253 28x3T2x% - 28x 420 Ixd4 Tx3418x24 Tx+3

Sx¥ Ox2423x— 5§ X) x4 Hdxt 92 - 10x

5%3-4-20x2+4-45x 50 4 4x24- 9x-+10

—11) 11x®—22x-353 10x*418x24-46x—10

X*4-2x4-5 11x) 11x34-22x%4-55x
x24-2x4-5

{.ﬁj The G.C.M. method will be cumbrous as usual.
(i) x84 11X 2Tx24- 1 Tx -5 = (132 5) (dx2-+3x-+-1) and
3T I8 Tx -5 = (x24-2x+-5) (3x24-x+4-1)
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But the factorisation of the two big biquadratics into two
further factorless quadratics each, will entail greater waste of
time and energy.

So, the position may be analysed thus:

(i) The G.C.M. method is mechanical and reliable but too
cumbrous:

(if) The Factorisation method is more intellectual but harder
to work out and therefore less dependable;

(iif) The Vedic method is free from all these defects and is not
only intellectual but also simple, easy and reliable.



ELEVEN

—

simple Equations (First Principles)

As regards the solution of equations of various types, the Vedic
sub-Satras give us some First Principles which are theoretically
not unknown to the western world but are not utilised in actual
practice as basic and fundamental first principles of a practically
Axiomatic character in mathematical computations.

In order to solve such equations, the students do not generally
use these basic sub-Shfras as such but almost invariably go
through the whole tedious work of practically proving the for-
mula in question instead of taking it for granted and applying it!
Just as if on every occasion when the expression a%-b*+c*—3abe
comes up: one should not take it for granted that its factors are
(atb-c)and (a+b2+c*—ab—be—ca)but should go through
the long process of multiplying these two, showing the product
and then applying it to the case on hand, similarly for Pythagoras
Theorem etce. !

The Vedic method gives us these sub formulae in a condensed
form like Pardvartya etc., and enables us 1o perform the neces-
sary operation by mere application thereof. The underlying prin-
ciple behind -all of them is g¥mEed sgraaa (Paravartya Yojayet)
which means: “Transpose and adjust”. The applications, how-
ever, are numerous and splendidly useful. A few examples of
this kind are cited hereunder, as illustrations:

I:-l} Ex+?=x+9 2 Eﬂ—x‘:g‘"? RIS £ 7 TI'I.E Etdﬂd.ﬂllt has to
perform hundreds of such transposition-operations in the course

of his work: but he should by practice obtain such familiarity
imilate and assume the general

with and master over it as to assi
fi_:_TJ- and apply it by mental

form as that if ax-+b=cx+d, x= A—0C
case actually before

arithmetic automatically to the particular

him and say:
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- i R - o A ..—:::,_.,_1.'“
2X+7=x4+9 /. X -1 i

the whole process should be a short and simple mental Process.

§rconD GENERAL TYPE

commonest kind of transpositlions, The

2y The above is the ;
() in which each side the L.H 5, ang

second common type is one
the R.H.S. contains two binomial factors.

In general terms, let (x-+3) (x-+b)= l'.?f-_‘l"':} (x-+d). The ugyy
method is to work out the Iwo multiplications and do the trays,

positions and say:
(x+a) (x+b) = (x+c) (x-+d)
. x3+-ax-bx-+ab — x*--ox+dx+cd
sax+bx—cx—dx=cd— ab
~x(a+b—c—d)=cd—ab
~ cd—ab
"~ atb—c—d
It must be possible for the student, by practice, to assimilate
and assume the whole of this operation and say immediately:
cd—ab
a+b—c—d
As examples, the following may be taken:

(1) (F1) (x+2) = (x~3) (x—4) . x= H;EJF‘EL:i_“:l

L _ e O %
D) (x—6) (+D=(c+3) k=11 2 x=—p==g = 5

I-' };

X =

@) o= x=H=-D < 2 x= _2‘1'__51+ﬂ1+4= =
!
) 6= x=9=(x-3) x-22) ., x= _7_Eg+i:f 577
!
() (x47) (x4+9)=(x43 2N ¢ x— 66-63 ..o
SR S = s =
6) (x+7) (x+9)=(x—8 8863 25 _7
- T I k = —IF-_.-._F
J Do) v A e !
63— 63 Vg

(N &+7) (x+9)=(x+3) (x+21) 7, x=
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His g3V general corollary Lo the effect that, if cd—ab
: . ifed —ab, i.e. if the product of the absolute terms be the
the sides, the numerator becomes zero; and

THirD GENERAL TYPE
The third 1ype is one which may be put into the general form:
%’_‘_‘."E: P .and, after doing all the cross-multiplications and

c+d 4 o
t;ampnsitiﬂus etc., we gel I=:q—c;i

practice) be able to assimilate and assume this also and do it all

mentally as a single operation.

Note: The only rule to remember for facilitating this process
is that all the terms involving x should be conserved on to the
left side and that ali the independent terms should be gathered
together on the right side and that every transposition for this
purpose must invariably produce a change of sign, i.e. from - Lo
— and conversely: and from x into < and conversely.

. The student should (by

FourTH GENERAL TYPE
: m n
The fourth type is of the form = +a+ e 0.

After all the L.C.M’s, the cross-multiplications and the trans-

L - mb—na L =R
positions etc., are over, we get X= —— A This is simple

enough and easy enough for the student to assimilate; and it
should be assimilated and readily applied mentally to any case

before us.
his process may, in due course, by

In fact, the application of t : .
means of practice, be extended so as 10 Cover CAsEs involving a

larger number of terms. For instance,
m n B
:-:—l—a+ }H—b+ xtc 2
. mx+b) (x-€)+n(x+c) (x4-a)+plxta) (x+b) _p
5 (x-+a) (x+b) (x-+c)
miﬂ+:-:{h+-:}+h=]~1-n1;ﬂ+1{c+a}+':ﬂ]+
plx*+x(a+b)+ab]=0
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. x3(m-+n+p)+ ﬂ[m(h.pr;}_[-n(c—;—a)—l—p[a—}- b)]+

(mbe--nca-pab) =0

If m+n-p=0, then

—mbc—nca—pab
¥ o=
m(b+c)-+n(c+a) +pla+b) _ _

But if m+n-+4p=£0, then it will be a q}ladratlr: equation ang
will have to be solved as such as explained in a later chapter.

And this method can be extended to any number of terms on
the same lines as explained above.

LINKING NOTE
SprECIAL TYPES OF EQUATIONS

The above types may be described as general types. But there
are, as in the case of multiplications, divisions etc., particuiar
types which possess certain specific characteristics of a special
character which can be more easily tackled than the ordinary
ones with the aid of certain very short special processes practi-
cally what one may describe az mental one-line method.

As already explained in a previous context, all that the student
has to do is to look for certain characteristics, spot them out,

identify the particular type and apply the formula which is
applicable thereto.
We will discuss these special types of e

quations, in the next
few chapters. ;
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gimple Equations

—

By SOUTRA SUNYAM ETC.

We begin this section with an exposition of several special
types of equations which can be solved practically at sight with
the aid of a beautiful special Siitra which reads: =7 gEgay=ai
{.‘;En_v.:;rm Samyasamuccaye) and which, in cryptic ]'ﬁnguagg which
renders it applicable to a large number of different cases merely
says: “when the Samuccaya is the same, that Samuecaya is zero™,
i.e. it should be equated to zero.

‘Samuccaya 15 a technical term which has several meanings
under different contexts; and we shall explain them, one by one.

FIrsT MEANING AND APPLICATION

‘Samuccaya’ first means a term which occurs as a common
factor in all the terms concerned.

Thus 12x+3x=4x+5x .-, 12x+3x—4x—3x=0

Soex=0 1 x=0

All these detailed steps are unnecessary, and, in fact, no one
works it out in this way. The mere factthat x occurs as a common
factor in all the terms on both sides [or on the L~H-5: (with _Em'g
on the R.H.8.)] is sufficient for the inﬂ?r:;nce that X is zﬂr;:-, :3::1
no intermediate step is necessary for arriving at this conclaston.
This is practically axiomatic.

And this is applicable not only
Quantity” but to every such case.
need not say; 9(x-+1)=T(x-+ iy

S9x49=Tx4T ;- 9x—Tx=T—9 .2 oAl

On the contrary, we can straightaway say- 9x
Xk 1=0 x=~—1.

to x or other such “unknown

Thus, if 9(x+1)= T(x-+-1), we

x=—1.

1y=T(x+1)

x=—2 .,
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gpconD MEANING AND APPLICATION

The word *Samuccaya’ has, as ts :‘fﬂm”d meaning, the Prody,
of the independent terms. Thus, (x+7) (x+9)=(x+3) (x 21
« Here 7 9=3x21. Therefore x=0.

This is also practically axiomatic, as has I:re_en dealt with i, 2
previous section of this very subject of equations and need py
be gone into again.

TuiRD MEANING AND APPLICATION

‘Samuccaya’ thirdly means the sum of the denominators of

two fractions having the same numerical numerator. Thus,

1 1
T i e

This 15 axiomatic too and needs no elaboration.

FoUurRTH MEANING AND APPLICATION

Fourthly, ‘Semuccaya’ means combination or total. Tn this sense,

itisused in several different contexts; and they are explained
below:

(1) If the sum of the numerators and the sum of the
nators be the same, then that $um =zero. Thus,
2x+9  2x+7
2x+T  2x+490
S (2x49) (2x4-9) = (2x+T) (2x+T)
SoAxP-36x+-81 =dx®4 28x - 49
S8y = —32
SR
This 1s the current method. But the =
eegye” formula tells us that, inasmuch a
DDy is also 4x+16 " d4x-+-16=0

denomi-

*fﬁﬂ-"mﬂ Sdamye-Samu-
S Ni+N,=4x-16 and

can at once mentally say x= — 4,

Note: If in the algebraical total, there be 4 :
that should be removed. Thus: fMumerical factor,

x4 x+1
0x-+7 2x+43
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Here Np-+Np=4x--3; and Dy+4-D,=8x-10. Removing the
qumerical factor, we have 4x+-3 on both sides here too.
;odx4-5=0 . x=—5/4

No laborious cross-multiplications of N; by D, and N, by D,
qnd transpositions etc., are necessary in the Vedic method.
At sight, we can at once say 4x-+5=0 and be done with it.

FiFri MEANING AND APPLICATION FOR QUADRATICS

Wwith the same meaning, i.e.total of the word q=ag San-
ecaya’, there is a fifth kind of application possible of this Sifre.
And this has to do with quadratic equations. None need, how-
ever, go into a panic over this. It is as simple and as easy as the
fourth application; and even little children can understand and
readily apply this Sitra in this context, as explained below.

In the two instances given above, it will be observed that the
cross-multiplications of the coefficients of x give us the same co-
efficient for x2. In the first case, we had 4x® on both sides; and in
the second example, it was 6x2 on both sides. The two cancelling
out, we had simple equations to deal with.

But there are other cases where the coefficients of x2 are not
the same on the two sides; and this means that we have a quad-
ratic equation before us.

But it does not matter. For, the same Siatra applies although
in a different direction here too and gives us also the second root
of the quadratic equation. The only difference is that inasmuch
as Algebraic ‘Samuccaya’ includes subtraction too, we therefore
now take into account, not only the sum of N, and N; and the
sum of D, and D, but also the differences between the numerator
and the denominator on each side; and, if they be equal, we at
once equate that difference to Zero.

Let us take a concrete example and suppose we have to solve
Ixn4+4  S5x-46
6x+7 2x-+3
(f) We note that N,+N,=8x+10 and D,;+Dy is also 8x--10;

we {therefore use the method described in the fourth applica-
tion given above and equate 8x-10 tozeroand say x= _'5""4'
(if) But mental cross-multiplication reveals that the x* coefficients

the equation
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on the L.H.S. and the R.H.S. are 6 and 30 respectiveyy, an
ot the same. So. we decide that itis 4 quadratic Equmiaﬂ.
and we observe that N,~D;=3x43 and that NE"""E= -
3x-+3. And so, according to the present application {’rth&
same Siifra, we at one say 3x+3=0 % x=~1. E

Thus the two roots are —5/4and —1; and we have solyyg 4
quadratic equation at mere sight (without the u5urllparuphn_
nalia of cross-multiplication, transposition ete.). We shall TeVer
1o this at a later stage (when dealing with quadratic equatioy,
themselves, as such).

SixTH MEANING AND APPLICATION

With the same sense ‘total’ of the word ‘Samuceaya’ buting
different application, we have the same Siifra coming straight g
our rescue, in the solution of what the various text-books every-
where describe as ““Harder Equations™, and deal with in a very
Jate chapter thereof under that caption. In fact, the label *“Har-
der™ has stuck to this type of equations to such an extent that
they devote a separate section thereto and the Matriculation
examiners everywhere would almost seem to have made it an in-
variable rule of practice to include one question of this typein
their examination papers.
MNow, suppose the equation before us is:
Ay e W
x—7  x-9 x—-6" x—-10
In all the text-books, we are told to transpose two of the terms
50 that each side may have a plus term and a minus term, take
the L.C.M. of the denominators, cross-multiply, equate the
denominators, expand them, transpose and so on and so forth

And, after 10 or more steps of working, they tell you that 815
the answer. N

The Vedic Sitra, however, tells us that, if other elements beit
equal, the sum-total of the denominators on the L.H.S. and
total on l!m R.H.S. be the same, then that total is zero!

In this instance, as D,+-D, and D,+-D, both total 2x— 16

o 2= 16=0 x=8! And that ; g s more
Instances may he noteds 1at is all there is to it! A few
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I == o 2 . —
)y 77 9 x16 1 x+10 -X——8
O 11 ¥ ooe
b Ml e i ¥ e
I 1 1 1
@ —Fr i 5Tz

DI1sGUISED SPECIMENS

The above were plain, simple cases which could be readily
recognised as belonging to the type under consideration. There
qare however several cases which really belong to this type but
come under various kinds of disguises thin, thick or ulira-thick!
But, however thick the disguise may be, there are simple devices
by which we can penetrate and see through the disguises and
apply the ‘Sinya Samuccaye’ formula:

THIN DISGUISES
I 1 1 1
A B Gres s 1 i
Here, we should transpose the minuses, so that all the 4 terms

are plis ones:

1 1 I 1
= _— . =E.
x—8 +:-:—9 :Ir.—lfj_x—ﬁ Sa=d

The transposition-process here is very easy and can be done
mentally in less than the proverbial trice.

I I A P
B I 533 " xFz 4 Ii
1 l __1_,._ ._I..— 'xna
) x1 x—3 x—-4 x-87 :
O N SO W L - x=3(b+9)
x—b x—b—d x—ct+d x—C
P ‘ : L . x=—3(b+0)

Xtb xibtd x+c-d x+¢

_ Note: If the last two examples with so many literal m&lﬁmeﬂiﬂ
involved were to be done according to the current system, 1;
labour entailed over the L.C.M.’s, the multiplications etc., WoU
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have been terrific; and the time taken would have beep e
tionate too! But, by this Vedic method, the equation i Eﬂlvggur‘ |
sieht! ar |

MepiuMm DISGUISES

The above were cases of thin disguises, where mere trang ’
position was sufficient to enable us to penetrate them. We nn. '
turn to cases of disguises of medium thickness: |

0 x—2, x—=3 x—1,6 x—4 |

:{-3+ x—4 x—2+ X3
Dy dividing the Numerators out by the Denominators, y,
have:

1
Xx—35
Cancelling out the two ones from both sides, we have the

equation before us in its undisguised shape and can at once say,
!.l 1=3é'

1 1 1
o s s Sl

Now, this process of division can be mentally performed very
easily, thus:

) o=t = (=141

(i) Applying the Paravartya method mentally and transferring
the independent term of the denominator with its si gn chang-
ed to the Numerator, we get 1 as the result in each of the 4
CASES.

With the help of these two tests, we know that “the other ele-
ments are the same”; and, as D,+D,=D,+D,, we therefore
identify the case before us as coming completely within the juris-
diction of the “Siinvam Samuccaye” formula

W 2x=T7=0, x=3}
X X=9 x+41 x-—8§
@) =3t x-7 x—1" x—6

1 1 1 l
Here, — = ;
Ccre I + ] 1 -r" T ?
Secondly, by Paravartya,
2 L 2 2

x—=2 x=T x—1  x—=6
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y lrﬂngpnsct]m nifnns I:r.:r'ms.:md find that all the tests have
\;ialisﬂmmf[lf passed. All this argumentation can of course
s .
done mentally
ba ok iy azx—-Euﬂ_'_ X =4
G, W SaY -
25—3 , Ix—20 _ x—3, 4x—19
A=z T x=7 x4 x=5
Here 343 =2%-+1; the numerators all become 1; and
D1+D2=DE+D4=E.\:-—9=G S x=4}
-8, 4x—=35 2x—-9 Sx-34
o e i,
Here, 34+%=2-4%; and the other 2 tests are all right too.
ll' xﬂﬁ
k=13 dx—41 2x—13 35x—4l
OFF T30 *x=6 ' x=8
All the tests are found satisfactorily passed.
S 2x—14=0 7, x=7
dx+21 , 5x—69 3x—5 6x—41
® X+ 35 TX=1T =2 =7
All the tests are all right °, 2x—=9=0

mxﬂ+3x+3+ xt—15 _ x*+Tx+11 x2—dx—20
x+2 x—d x+5 x—1
Either by simple division or by simple factorisation both of
them, mental, we note:
() G+ D +H(x-H4) = (x+2)+ (x+3)
(fi) the numerators are all unity; and

(itf) Dy+Dy=Dy4+D,=2x—2=0 -, x=1

THICKER DI1SGUISES
2 3 1 6

O wptsp e
() At first sight, this does mot seem to be of the type which we
have been dealing with in this section. But we note that the
“oefficient of x in the four denominators is not the same. 5o,
¥ suitable multiplication of the numerator and the deno-
Minator in each term, we get 6 (the L.C.M. of the four co-
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efficients) uniformly as the coefficient of x in all of thery,
Thus, we have:

G 6 6 6

<hT e &
Ox49 ' Ox-+4  O6x46  6x+
Now, we can readily recognise the type and say:

— 13

Wy &t W e e e
12x413=0 . x T

But we cannot gamble on the possible e:'ﬁdnm.e of its being
of this type and go through all the laborious work of
L.C.M., the necessary multiplications® etc., and perhap;
find at the end of it all, that we have drawn a blank! There
must therefore be some valid and convincing test whereby we
can satisfy ourselves beforehand on this point and, if con-
vinced, then and only then should we go through all the toi
involved.

And that test is quite simple and easy:

213318 But even then, only the possibility or the
probability and not the certainty of it follows therefrom.

(if) A second kind of test—with guarantee of certainty—is avail-
able too. And this is by cross-multiplication of N, by D, and
of Ns by D, on the one hand and of N, by D, and of N, by
D, on the other. And this too can be done mentally.

Thus, in the case dealt with, we get from each side—the
same 12X+ 13 as the total °, 12x4+13=0 -, x= :-:—g‘
@ 3 & 3 2
R vy (e e e
(f) We transpose mentally and note:
f+E=%44. 50, we may try the L.C.M. method.
LA S 6
GF2 ' 613 Gkl 6rd

. | =9
.,12}{ 5={] 3 E —
l s A 3

(i) Even here, after the
to §+4

1 i H " H I.
0 ; . Frchl"|nﬂ.r}r tf:st_lng I:l'f %_'_,E bElnE .ﬂqllﬂ
; ¢» We may straightaway cross-multiply and say:
S 2450 x50
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3 — =y +
o it H-1 -2 Zxhl
. By either of the two methods, we get 12x—1 =0

115

| i I_]_ 3
@ T3 -1 x5 =T

By either method, Gx+-8=0 . x =‘_—_:?1:

g1l 9x—9  4x++13  15x—47,
) F5 7~ x—4 x+3  3Ix—In,
Here $—§=%1—-4" .. Yes.
By simple division, we put this into proper shape, as

follows:
1 3 1 3
1+5+ 3x—10 :;+3+ Ix—4

" Here }+32=14% ., Yes.

= By cither method, 6x-5=0 , x= __2.'
5-6x , 2x+47 31—-12x, 4x+421
) Ix— 1+ x<43  3x—7 + X3

1 3

3
" x+43 T

1
3x—1 x+5 + %=1
—4
», By either method, 6x+8=0., x= —

FURTHER APPLICATIONS OF THE FORMULA

(1) I the case of a special type of seeming ““cubics”

There is a certain type of egquations which look like cubic
¢quations but, which after wasting a lot of our time and energy
tury ot mh.gs,imple Equﬂ“ﬂ'ﬂs of the first dﬁgt:ul:. and which
tome within the range of the v Sanyam Samuceaye” formula.
Thus, for instance
(K= 3P4+ (x =9 =2(x—6

The {:urmmjs;-:%:m -.inrka{this .31[ at enormous length by ex-
Panding ] the three cubes, multiplying, tr;1nspDSfHE ete., and

Nally gives us the answer x =6
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The Vedic Sitra now undér discqssinn 18, however, appﬁﬁﬂblt

to this kind of case too and says: |
(x—3)+(x— 9)=2x—12. Taking away the numerical factor,
have x— 6. And x— 6 is the factor under the cube on RHS,

5ox—6=0 1 x=6

W

The Algebraical proof of it is as follows:

(x—2a)*-+(x—2bp=2(x—a—Db)"
+ x3—Gx%a-12xa?— 8a3-x3— 6x*b--12xb* — 8b?
— 2(x3— 3x?a— 3x%b-+-3xat-+3Ixb*-} 6xab—a®— 3a*b— 3ab® - b?)
— 2x%— 6x%a — 6x°b+6xa?+-6xb24 12xab— 2a%—G6a*b— Gab® -2
Cancelling out the common terms from both sides, we have:
12xa2-+12xb%— 8a%— 8b* = 6xa?--6xb24 12xab— 2a?— 6a%b

— Bab?— 2h?
6xa?4-6xbz— 12xab = 6a%— 6a*b— 6ab®46b?
~. €x(a—b)*=6(a+b) (a—b)*
& Xx=a-+b .

Obviously this particular combination was not thought of and
worked out by the mathematicians working under the current
system. At any rate, it is not found listed in their books under
any known formula or as a conditional identity and so on. The
Vedic mathematicians, however, seem to have worked it all out
and have given us the benefit thereof by the application of this
formula to examples of this type.

We need hardly point out that the expansions, multiplications,
additions, transpositions, factorisations in each particular case of
this type must necessarily involve the expenditure of tremendous
time and energy, while the Vedic formula gives us the answer af
sight!

Three more illustrations may be taken:

(i) (x— 149)-4-(x— 51)%= 2(x— 100)?
The very prospect of the squaring, cubing etc., of these num-

bers must appeal the student. But, by the present Siitra we can al
once say: 2x—200=0 . x=100

(i) (x—249) - (x4-24 7% = 2x=1)2

This is still more terrific. But, with the aid of this Sitra, W&
can at once say: x=1: and

(i) (x+a-+b— )4 (x-+b-c— ay=2(x+b)?
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The literal coeflicients make this still worse, R

i ut the Vedi
mental aNSWET 181 X=— b. ¢ one-

linc
(2) In the case of a .fper.!fﬂf type of seeming “bigquadratics™
There is also similarly, a special type of seeningly “biqua-
dratic” equations which are really of the first degree and which
the same SiFtra solves for us, at sight. Thus, for exa mple:
(x+3)® x+1
x 5P x+7
According to the current method, we cross-multiply and say:
T (x| 3P = (x4 1) (x | 5
Expanding the two sides with the aid of the usual formula
[(x+a) (x+b) (x+c) (x+d) =x*+-x*(a+b+c+d)
+x*ab-+ac+-ad4-be+-bd-+cd)
+x(abc+abd+acd+bed)+-abed)] twice over, we will
next say:
x4 16x34-90x24-216x+ 189 = x* -+ 16x3+90x24-200x - 125
Cancelling out the common terms and transposing, we then say:
S 16x=—=64 ', x=—4
According to the Vedic formula, however, we do not cross-
multiply the binomial factors and so on but simply observe that
N,+D,* and N;+D, are both 2x-+8 and ", 2x+8=0
s Xx=—4
The Algebraic proof hereof is as follows:

(x+at+dy  x+a
(x+a4+2d?® x+a+3d o
.. By the usual process of cross-multiplications,
(x+a-3d) (x4-a+d)*=(x-+}a) (x+a-+2d)*
~» By expansion of both sides "
d-+24a
X*4x3(da+6d) - x¥(6a?-+18ad-+12d%)+x(4a*+ 18%°
'i"1§ﬂ“]+[a!+ﬁ:.("d+12a”d*+12-ud3+3d“]=~:-:;4—:-:’5*13115[1}
+X¥(6a2-+ 18ad -+ 12d%)+ x(4a?-+ 1 8a2d-+2dad* - Bd)rele-
l:i@'-I'L--‘.‘.:a;'.].lfl:lg common terms out, we have:
%(10d%)-- 10ad?+-3d* = x(8d*)+Bad’

-|_|_-_-_-___-
*(within the cubes)
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o 2@ 4-2ad%-3d} =0
=, Cutting d3 out, we have 2x42a--3d - 0 [, x= =1 {E"-l".l-qu}

At this Fﬂiﬂfu the student will note t['litlH.l'{' !}1 under l]‘!_g e
and N,+-Ds areboth (2x-2a+4-3d). ﬁ.n:d this gives us the Tequiryy
clue to the particular characteristic which characterises this typs
of equations, i.e. that N;--D; under the cube and Na+D, my
be the same: and, obviously, therefore, the «Sinyan Samuicegyy
Sitra applies to this type. And, while the current system [,
evidently not tried, experienced and listed it, the Vedic seers hy
doubtless experimented on, observed and listed this particuly
combination also and listed it under the present Sifra.

Note: (1) The condition noted above about the 4 binomials j
interesting. The sum of the first+the sccond must be the same a
the sum of the third and fourth.

(2) The most obvious and readily understandable conditiog
fulfilling this requirement is that the absolute terms in Ny, N,
D, and D, binomials should be in Arithmetical Progression.

(3) This may also be postulated in this way, i.e. that the differ-
ence between the two binomials on the R.H.S. must be equal to
three times the difference between those on the L.H.S. This,
h““""?”"m s only a corollary—result arising from the AP.
relationship an_nidst the four binomials namely, that if Ny, Ny,
D, and D, are in A.P. it is obvious that D;~N,=3(D;—Ny.

(4) In any case, the formula in this special type may be enun-

ciated—in general terms—thus: if N+D .
' on b the
same, N-+D should be equal to zero. n both sides be

Two more examples of this type may be t :
@ E=P_&=3) Lo o e
(x=7 (x=9) ** Rt

{2] {x"aja e x—2a-b
(x+bf  xFat2b

Working this out with all the litera] coefficients i
multiplications, expansions, cancellations, s ﬂlld_"-:-'lth Cross-
galore would be a horrid task even for e POSMODY: £ty
student. The Vedic formula, however, tellsy PR

sthat (x— b
and (x—2a—b)+(x+a+2b) both total a)+(x+b)
s x=}a—-b) W0 Zx~atb
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. above examples, it wi
Nore: In all the above examp '11 .'“'”11. be observed that the
4 bin amials are not pmrcl_ﬁn rithmetical Progression but are
160 €0 related that their cross totals are also the sume L
als0 § .

: : sample worked out ab e
rhus, in the first examp ove, by cross-multipli-
we have GeFT(x+3=(x+1)(x+5)*; and the cmi;-

catien, :
Lddition of these _far:,t-?rs gives us 4x--16 as the total on both
sides; qnd this tallies with the value x=—4 obtained above.

In the second example:

(x+a+3d) (xFa-td)*=(x+a) (x-+a+2d)*
And here to0, cross-addition gives us 4x-+4a-6d as the total on
both sides. And this too gives us the same answer as before.

In the third example, we have:

(x—9) (x— 5 =(x—3) (x= Ty
And here too the cross-addition process gives us 4x— 24 as the
total on both sides. And we get the same answer as before.

In the fourth case, we have:

(x+a+2b) (x—a)*=(x—2a—b) (x-+Db)?
And cross-addition again gives us the total 4x—2a-+2b on both
sides and, therefore, the same value of x as before.

The student should not, however, fall into the error of imagin-
ing that this is an edditional test or sufficient condition for the
application of the formula. This really comes in as a corollary-
consequence of the AP relationship between the Binomial
factors. But ‘it is not a sufficient condition by itsell for the
applicability of the present formula. The rule about N;+D, and
N,+D, being the same, isthe only condition sufficient for this

purpose.
An instance in point is given below:
(x+3P_ x+2
(x45* x+8

Here, cross-addition gives 4x-+17 as the total on both sides, and
g”: condition D,—N,=3(D,—N,) is also satisfied as ﬁ=lb{?*
Ut 34-5:£24-8: and, as this essential condition is lacking, this

ETWE'I equation does mot come within the purview of this
ra,

On actyal cross-multiplication and expansion etc., We find:
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X017 105x3 2755 -4 250 = x44- 17 x3-1-99x2 .

i 243};-|.2|G
oo 0x*4-32x+-34=0, which is a qu

adratic cquatjop With

e

; —164-
two Irrational Roots : :ES_I ¥ and not a simple cquatioy ,,

all, of the type we are here dealing with.
And this is in conformity with the lack of the basic conditjy,
in question, i.e. that N,+D, and N;+D, should be the same.

(3) In the case of another special 1 vpe of “Biguadratics™

There is also another special type of “Biquadratics’ which ara
really simple equations of the first degree, and to which the
“Simyam Samuccaye”™ Sitra is applicable which we now go op
to. This section may, however, be held over for a later reading.

(1 (x+1) lfx"l"g]: (x+6) (x-+10)

(x+2) (x+4)  (x+3) (xF7)
or (x+1) (x+9) (x+5) (x+T)=(x+2) (x+4) (x-+6) (x+10)

We first note that cross-addition gives us the same total (4x+22)
on both sides. This gives us the assurance that, on cross-multi-
plication, expansion etc., the x' and the x? coefficients will cancel
out. But what about the x* coefficients?

For them too to vanish, it is necessary that the sum of the pro-
ducts of the independent terms taken two at a time should be the
same on both sides. And this is the case when i (x+a)(x+b)
(x+0) (x-+d)=(x+e€) (x+1) (x+g) (x+h), we have not merely

d4-b-tctd=e--f+g+h but also two other conditions fulfilled:

(f) that the sum of any 2 binomials on the one side is cqual to

the sum of some two binomials on the other; and (ii) ab+cd
on the left = ef+-gh on the right.

In the example actually before us, we find
fulfilled ;

(@) DA =(x+4)+(x46); (x+1) + (x+45) = (x4-2)4
(x+4);  (x+F1)+EA+T)=x+2)+(x+6); (%+9) ++ (x + 5) =
(x+-4)+(x4-10); (x-+9)+(x+T) = (x+6)+(x-+10); and (x.1.5)
+(x+7)=(x+2)-4(x410); and (if) (54-63) and (84-60) are
both equal to 68.

So, by this test, atsight, we know the equation comes under
the range of this Stitra °, 4x+22~0 , x=—35}

all these conditions

——

.
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gimilar is the case with regard to the equation:
(x+2) (x4 _ (x—1) (x+7)
@ GED)(xF3) =2 (+6)
« (x—2) (x+2) (x+4) (xF0)=(x—1) (x-+1) (x+3) (x-+7); and
(i) By cross-addition, the tatal on both sides is 4x4-10:
(i) The sum of each pair of binomials on the one sidz is equal to
" “the sum of some pair thereof on the other; and
i abted=ef+gh,ie. —4-+24=—1421 (=20)
+ The Sitra applies; and 4x+-10=0 7, x=-2}
This however is not the case with the equation:
@A) (x—1) (x—6) (x+6) (x+3) =(x—4) (x—2) (x+3) (x+7)
Here, we observe:
(i) The total on both sides is 4x-+-4; bur
(if) the totals of pairs of binomials on the two sides do not
tally; and
{iii) ab+-cdz£ef+gh
This equation is therefore a quadratic and not within the scope
of the present Sifra.

The Algebraical Explanation for this type of equations is:

(x-+a) (x+b) (x-+¢) (x+d)=(xTe) +f) (x+g) (x+h)

The data are:

(i)a+b+tctd=etf+g+h;

{if) The sum of any pair of binomials on the one side must be
the same as the sum of some pair of binomials on the other.
Suppose a+b=e-+f; and c+d=g+h;and

(iif) ab<-cd =ef+-gh

el 1‘+ﬂ{a+b+c+d}+x2[ah—{—a¢+ad+bc+hd+€d]

+x(abe+ abd-4-acd--bed)4-abed

— XA-fxi(e£4-g-+h)+? (cf+eg+en+HgHTed)

+x(efg+efh-+egh-+fgh)+-efgh _

. The x* and x? cancel out; and, owing to the data 10 the :‘.‘:?Ift.
the 32 coefficients are the same on both sides; and therefore ! :.:_:
foo cancel out. And there 15 IO qﬂﬂﬁl&ti'ﬂ :-quﬂﬂﬂ'ﬂ left for Us
Solve herein.
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Proof: The x* coefficients are:
L.H.S. ab-tactad+-be-+-bd+ed
R.HS. ef+eg+eh+fg+fh-gh
i-e. (ab+cd)4-a(c+d)4-blc+d) =ab+cd+(a+-b) (c+d)
and (ef4-gh)+-e(g+h)+f(g+h) =ef+gh--(e+F) (g1
But (ab+cd) =(ef4-2h); and a+-b =e--F: and c+d=ptp
.. the L.H.S.=the R.H.5.: and x* vanishes!

FURTHER EXTENSION OF THE SOTRA

In the beginning of this chapter, it was noted that if g functigy
containing the unknown x, v etc. occurs as a common factor iy
all the terms on both sides or on the L.H.S. with zero on the
R.H.S. that function can be removed therefrom and equated to
Zero. We now proceed to deal with certain types of cases which
do not seem to be of this kind but are really so. All that we haye
to do is to re-arrange the terms in such a manner as to unmask

the masked terms, so to sav and make the position transparcntly
clear on the surface. For exam ple,

X4a, 6 x+b xde
M 'b—l—c:+ c4a + atb 2
Taking —3 over from the RH.S. to the L.H.8. distributingit
amongst the 3 terms there, we have:

an SRR AR N PR

b+ c+a a-b
- X+a+b4c, x+btcta X+ectatb
il i cta T a+b =0

. By virtue of the Samuccaya rule,
x+atb+te=0., x=—(ath+g)
This whole working can be done, at sight, i.e. mentally.

Xta, x+b, x+ec  x42a x+2b x1-2¢
(2) b—!—c+ E+H+H+b h+n-—a+ “+3‘b+ﬂm
Add unity to each of the 6 terms; and obserye -

. Xtatbte, xtatbtc, xtatbie

s + D, 6 5 =
x+a—[—b+c+ :-;—f—a+T=~i—+3+ xta+b+e
o D_._ [}E D‘

5 xtadbde=0. x=—(at+b+o)

e
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—a x—b, x—c¢c x+a
O et oFal aTo" 2a+—|1-)_|_c+ ﬁ% +gte
Subtract unity from each of the 6 terms; and we ht:e-*-b
x—a—b—c=0., x=(a+b+c) :
xta’ x+b? x+-c?
® @D @ETT GFOGFD) T ©Fa) oTF)
_ x—be n X—ca + x—ab
a(b+c) ~ b(cta) ' c(a+b)
Subtracting 1 from each of the 6 terms, we have:
x—ab—ac—bc=0 ;, x=(ab+bc+ca)
x—bc, x—ca, x—ab
©) b+c + c+a + a+b
x+2al-be  x+2b-ca  x+2ct—ab
2at+b+c ' 2btcta | 2ctatb
Subtracting a from the first terms, b from the second terms
and ¢ from the third térms on both sides, we have:
x—ab—bc—ca=0 ., x=ab+bc+ca
x+ad+2c?  x+b®+42a? , x+c?4-2b?
® S5t —<ra =75 =0
As (b—c)+(c-a)+(a—-b)=0, we add b—c,c—aand a—b to
the first, second and third terms respectively; and we have:
xat+bi4cr =0, x=—(a*+b*+c?)
ax--a(a*+2bc) bx-+-b(b*+2ca) n cx+-c(c*+2ab) _ 0
(7) b—c ) c—a a—b
As a(b—-c)+b(c—a)+c(a—b) =0
*. We add a(b—c) to the first term, b(c—a) to the second and
c(a—b) to the last; and we have:

_ ax-a(a3+2bc) +a(b—¢)

b= b—c
_ ax-+a(al+2bc)+-a(b -’
b—c¢
_ ax+a@+bicl) Bj_c (x+(@*+b*+¢)}
b—c¢ =

Similarly, t; = (;b—a {x+(a’+b’+°’J}

andt, = a-—f—l;{x+(a’+b’+°’)}=0
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o xtattbict=0,, x=—(a+b"+c)
x-+ad+42b? | x-4b*+2¢° n x+c*4-2a’
® b—c¢ = a—b
e 232 2h2 -+ 2¢2-+ab--ac+4-be
Splitting the R.H.S. into (b*+4be+tc®)+(c*+ca-ta?)+(a’+ap
-Lb?), transposing the three parts to the left and combining the
first with the first, the second with the second and the third with

the third by way of application of the ‘ddvamadyena’ formula,
we have:

. 3 .3
= TR pabetod)

_ Xx+al+2bi-bi4e?  x+alibiic?

b—c b—c¢
Similarly, t, = S 2me
_ the same N
and t, = e

S x=—(P+P458)
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Merger Type of Easy Simple
Equations

——

By THE PARAVARTYA METHOD

Having dealt with various sub-divisions under a few special
types of simple equations which the Sinyam Samyasamuccaye
formula helps us to solve easily, we now take up another special
type of simple equations which the Pardvartya Sitra (dealt with
already in connection with Division ete.) can tackle for us.

This is what may be described as the merger type; and this too
includes several sub-headings under that heading.

Tus First TYPE

The first varicty is one in which a number of terms on the left
hand side is equated to a single term on the right hand side, in
cuch manner that N;+4+N.+N; ctc., the sum of the numerators
on the left and the single numerator on the right are the same-
For instance,

:'le+ :!E-:E == :::;T' Here N,+Na, ie.(3+4)=N(ie-7) So
the Siifra applies.

The procedure is one of merging of the R.H.S. fraction into
the left, so that only two terms remain. The process is as follows:

As we mean to merge the R.H.S.into the 1..H.S., we subtract
the independent term of the to-be-merged binomial from the
absolute terms in the binomials on the left and multiply those
remainders by the mumerators of the terms On the left. And the
process is complete. ‘

(i) We first put down the two to-be-retained denominators down
thus:

—

X1 x+2
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(ii) Then, as 3 from the R.H.S. is to be Fwtgcd, we  subtrag
that 3 from the 1 in the first term, obtain —2 as the remaijpg,
er, multiply it by the numerator, 1.¢. 3, get —6 as the prodyy
and put that down as the new numerator for our first term.

(iii) And we do {he same thing with the second term, obtain —g
as the product and set it down as our numerator for the
second term of the new, i.e. the derived equation.

(i¥) As the work of merging has been com pleted, we put Zero op
the right hand side. So the resultant new equation after the
merger now reads:

-6 4
xF1 x+2

Then, by simple cross-multiplication, we say

o odx4d4=—6x—12 , 10x=—16 7, x=—8/3
or, by the general formula (—mb—na)/(m+n) explained already

in the chapter on simple equations and first principles, we say at
Once .

e ()

244
='='_ET;— Ejrj
The Algebraical Proaf hereof is:
3 4 1 3 4
e e, Al i 3T A3
3 3 4 4

“ XF1  x13 %43  x+2
o Hx43—x—1) 4(x+2-x-3)
D EF) (x4+3) (x+2)

= Ty GxH12 k=4 10k= 16
s Xx=—8f5
The General Algebraical Proof hereof is:
P, 4 _Ptq
x+a  x+4b x+4c
* P'___._ q g p I q
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7

p(x-te —~x—a) _ gq{x+4-b—x ~c)
S e (o) (o) (x-+b)
P[ﬂ#ﬂ}= g(b—c)
Y x4a  x+b
. x{p(e—a)+a(c— Db} =bp(a-c)+aq(b—c)
bpfa—c¢)+ag(b—c)
+* = "pc—a)+qg(c—b)
The Algebraical explanation may look Frightfully long. But the
application of ‘thﬂ ‘Pardvartya’ Siitra as hereinabove explained
and illustrated is simple enough and casy enough and should be
welcomed by the student with delight,
A few more examples of this sort may be noted:
3 5 8
O 356~ 13
Here 3-+5=8 °, The Sirra applies.

=5 (=G =15, -4 o —90-90
“RT2 T =8 i3 i=e 0N A= a3
2 3 5
@ :~:+E+ x+3 X453
Here 2+4+-3=35 .*, The formula applies.
) i e
L H"I‘E-{- :l:+3 _{]-p X= 2‘%

Note: At this stage, when both the numerators are found to be
—6 and can therefore be removed, the formula “Sinyam Samy-
ceaye” may be readily applied; and we may say:

(x+2)+(x+3)=0,, x=— 23

2 3
= , a8 24+3=3
e '
the merger Sitra applies: but after the merger, thr:-numt:fﬂt_ﬂl's
are different (i.e. —10 and —12) and therefore the “Shnyant’ Sitra

But if
X

Di1sGUISES

Here tgo, we have often to deal with disguises, b Ef:ﬁ
drough and penetrating them, in the same Way as 11 :JI}: pre
¢hapter yith regard to the “Sinpam Samuccaye formula.
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A few illustrations will make this clear:
5 2 3
(D X— 2+ I—x x—4
Here, mere transposition will do the trick. Thus:
2 3

3 Now, 2-£3=73 ., The Siitra applies.

i
- R - ] -26 13
- x_3'+?|."‘4_ﬂll = :'__ 4
4 9 15
(2) 2:-a+1+ Ix+2  3x+1

4-4-9-£15 . Doubt arises; but the coefficients of x being diffe-
rent in the three denominators, we try the L.C.M. method and
get:

12 18 30
6r3 T 6xra - 6xt2

And here, on noting N; (12)4N, (18) =N, (30), we say: *Yes;
the Sirra appliee” and proceed to apply it:

s 12f(6x+4-3)+-36/(6x+4)=0 ;, x=— 13/24

But how should we know before-hand that the Shatra does
apply? The test is very simple and merely consists in the division
of each numerator by the x-coeflicient in the |denominator as in
the ‘Sinyam’ case. Thus $-+§=2+43=>5; and 4. is also 5.

Say, “yes" and go ahead, with the merging.

4 9 25
3 mot =1 -1
Here (%) and 5° are the same (i.e. 5) . Yes.

60 90 150
Y gor=T5 T k=10 Fox—6 |\ote 60+90=130
2 3 5

" 5= -+ =10~ 30r—¢ Note 24+3=5 ", Yes

Proceed therefore and say:

~18 12
— == - :H.E.
0x—15  F0x—10 0 -- X=%
7 6 15
4 -
A e ey

Here +§=1+11=21; and 3% is also 2} . Yes
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po the merging therefore and say:

Y 126 _ 210
fo 84 ;-1-12+ Sdx+21  84x-+70
2, 3 _ 5
grTs T Al BAxgq0 v Yes
~116 — 147 —0 - _ =50
S gRIE T R T
4 7 _ 3
3 51T OxF1 - 2x1
Here §+15=15 =3/2 .. Yes
B + 7 _ 15 =
. [oxg3 " i0xF1_ 10x+5 -+ ¢
—24  —28
B T R T
s —520x—80=0
1..1. :le="2_||r13 .
7 6 15

® T EFL T Gl
Here I4-2=21; and % is also 2} ., Yes

L8 16 20
** 84x-+12 ' 84x+-21  Bdx+-14 °°
2 3 5
SR 7 o ML oy - e R
e -
"t 84x+-12 s Bdx 421 =0
- 1428x-+-168 =0
o g =A0E. =d
2 438~ 17

ExtensioN oF MERGER METHOD
(Multiple Merger)

129

Wenow take up and deal with equations wherein Ny+Ny+
N;(of the L.H.§.)=N of the R.H.S. and wherein the same

“Pardvartya’ (Merger) formula can be applied in exactly t

Way as before. Thus:

't | el 3 5 _. 2
R R, L

Test: 14+34-5=9 » Yes.

he same
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e 5 - h
x+2+ P e 0 .. Yes, again
. 2 i 3
s L
-6 -6
. == {)
"t :-:+2+ x+3 ;
—mb—na
. (i) By the Basic Formula (:-:= -m—__n—-)
_ IE—]—IE!=r 30 71
—6=06 =12 ;

or (if) By Simyam Samuccaye’ formula:
(X2 (x4-3)=0 1, xoe — 21

Note: These two steps of successive merging can be combined
into one by multip lying Ny first by 2—4 and then by 2—
6 and similarly N, first by 3—4 and then by 3=35,i.c.

proceeding as before

. B

"t x42 + X+3 v

= By cither method Basic or Sinyan, x v — 21
The Algebraic Proof hereof is this-

Ry R i P__ Hl'-i'-II'f-_I"}
X+a o x+4b ' x4c x-d

. Ma—d) n(b-d) plc—d)

QI X-+b +—:~:+r: =D
. mia—d) (a—c) +n[h~d][b—c} )
A X-a x+b

which is the exact shape of the fo

3, i.e. by

by 2 and

rmula required for the single-
step merger (vide Supra).

Similarly, the merg

er-formula can be cxtended to any number
of terms as follows

B L1 s L 9 r
x+a+ x+b+ X+4c' :-:-1—r.l+ x"'{f' o
- m+n+-p4qird.,..

X+4+w
o M@=W) (= =~)(@a~e) (a~d) (a—g)
X-ta
$AO=W) (=~ ) (b~¢) (b-a) (6=9)_,
X+b i

——
e ———————— .

o —
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whit

|
c;anT;:j (=2) (=NFH(=IN (=2 (-2 -13-12 -3

s===3)(— 2 (T D=0 (=2 - 616

TS

A few more illustrations of this typz are given below:

3 4 " 48 48
{n -?;,?.‘J.T" Ax+1 " 8x+1  6x+1
Here 24+4+4"=8; and =8 * Yes
24 24 14 192

1 1 6 B 8 :
: 24'.1:+3+ 24?=+5+ 24x+3  24x+4 °
4 2 6
s | 26 - ZAxF3 i
I
“ 2x+8 ' 24x+6
=7

ipt 6H1+lﬁﬁ=ﬂ .'. X = "E-

> . 18 , 75 _ 88
O taFr T 5T &
Here 8448425 =22; and &2 is also 22

60 |, 360 900 1320

- e = __'___._ l‘l-. Yc_s
‘g0 T G0xt20 T G0x+12  GOx+15
. Yes

L o 6 5 1B o 2_ .
S T30 T G0xF20  60xF12  B0XF15
I T -
“ G030 T 60x4+20  60x+12
y I 2 __ ..—3—-— * Yes
‘T30 G0xF20  GOx+12
L= g 16

0

“ Goxra0 T ext20

-7
‘. 2040x+-840 =0 -, X= -

HS.
Note: Any change of sequence of the terms on the L.H

tduse no change in the working or the result.

27 125 144
+ 5= -]
3x—1" 3x-—1 X

4
Op

'iﬁ_-l—_ﬂ__l_ Fax+6 ' 24x+3  24x+4 s Yes

Yes

131
s the general formula for the purpose. Thus, in the aboye

2}

will
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25
Here %-+ "’ITT + 1_5._. —249425=36;

and -]%iiﬂ also 36 .7, Yes
120 540 1500 2160
ST @r=20 T =12 ~ 60x=13 ** 18
2 9 25 36
@0 T dm=30 T ex=12 _ 6x—15 ' Yes
) ~30 —45  -15
s (By merger) gt o= =12 1O
.. 12 3 5
o T ey R
™ -35 o | -.-24 _ﬂ
*+ 8W0x—36 ' 60x—20
1 1
s znx—m+ 3ﬂx—lﬂ=ﬂ

. By basic rule or by cross-multiplication or by Sanyam
formula, 50x—20=0 .-, x=§
or by Multiple simulianeous merger
cor (—40)(=18) (~15)+(~270) (~8) (=)
: (=2 (=18 (=3)F+(=N(—8) (=)
a X

Note: Again any change of sequence of the terms on the L.H.S.
will cause no change in the working or the result.

=24
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Complex Mergers

#_

There 1S stil! another type—a special and complex type of
equations which are usually dubbed ‘harder’ but which can be
readily tackled with the aid of the Pardvartya Sitra. For
instance.

10 3 2 15

a1 3x—2 =3 i3

Note the tests: (1) 32 +3=3%-1+4"; and

(2) 10x3=2x13

je.10:15::2:3(or10:2;:15:3)

S 0 15 2 3
ransposing, TN T 313 2x—3 k-2’
and taking the L.C.M.

30 30 b 5

"+ §x+3 6x-}-4 ox—9 oOx—4
Simple cross-multiplication leads us to the main test:

; 30 30

 [6x13) (6x1+4)  (6x—9) (6x—4)
Here comes the third test, i.e. that the numerator of the final
derived equation is the same on both sides—

2 (6x+3) (6x+4)=(6x—9) (6x—4)

; 6—12 24 6 .

s 0 8 x=13
Clue—This gives us the necessary clue, namely, that, after
Putting up the L.C.M. coefficient for x in all the demominators,
(Dy) (Dg)=(D;) (D). As the transposition, the L.CM. etc., can
be done mentally, this clue amounts {0 a solution of the equation
ar .ﬁgﬁri

In these examples,
4 manner that, after the cross-mu

n such

we should transpose the 4 fractions all the

tiplication el are over,
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four denominators of the final derived Equatil:fn have the sap,
I.C.M. coefficient for x and the numerator is the same on th,
L.H.S. and the R.H.S. of the same equation.

A few more illustrations will be found helpful:
2 2 9 1
O st m=1 =~ &3 3xH
(i) By transposing etc., we have
6 6 18 18
I8x+3 I8x+6 Isx—10 .18x—9
Here the N on both sides of the final derived equation is 18.
2. The Sitra applies.

"o (18x+4-3) (18x+6) = (18x— 10) (18x—9)
_Iﬂzﬂﬂ—lﬂ 7, _ 4 1
X T IR0+ BT BT

Note: In some cases details of which we need not now enter
into but which will be dealt with later, the original fractions
themselves after the transposition fulfil the conditions of the test.
In such cases, we need not bother about the L.C.M. etc., but may
straightaway transpose the terms and apply the ‘Pardvariya’
formula. In fact, the case just now dealt with is of this type, as
will be evident from the following:

{H]—E-* 1 9 2

6x+4+1 3x+4+1 9Ux-5 2x-1

Here 3 =%; &=%; and the numerator on both sides of the final
derived equation is 1.

. The Siitra applies and can be applied immediately without
bothering about the L.C.M. etc.

o (6x41) (3x-H1)=(9x— 5) (2x— 1)

S 18x340x -1 18— 19x45 -, 28x=4 . x=1
2 3 1 6

2 — — ;T

@ myst P2 T T T &

L Cr T 3

243 x+1 BxF7 332

(1) By L.C.M. method, (6x+9) (6x--6)=(6x-+7) (6x-+4)

—26

B ey R R &,
 FREEIaE

(if) In this case, there is another peculiarity, i.e. that the tr80¥
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Complex Mergers

ion MY be done in the other way too and yet
e satisﬂﬁ’d' So, we have:
6+9) (6x+T)= [ﬁx—l—ﬁ]lgﬁx+4}
-39 =
1 g X iz

(i) And even, by :Ernss-multipiimtinn at the very outset, we
12x+13=0Dby S:_rrf:yn Samuccaye. ., x=—12. Tn such cases,
cequence in transposition does not matter! (This will be explain-

ed later:)
68 52 39

51 _
M 755 dxril dx—15 3x-7
Tests: 5 and %2 are both 17; and 4% and 27 are both 13.

This equation can be solved in several ways all of them very

simple and easy.
(i) By the L.C.M. process:
204 204 156 156

i2xF20 12x+33 12x—45 12x—28
= Tn the derived equation in its final form,
N,=204x%13=12x13x17;
and No=156% 17=12x13x17
» The Sitra applies.
& (12x4-20) (12x4-33) = (12x—45) (12x—28)
e 28x45-20x33 _ 600 , 23
v 20-334-45+28 126 *° 6
(ii) or, removing the common factor 12:
J 17 17 13 13
“ [3x420 12x133 12x—45 Ix—28
» In the (final) derived equation,

N,=17x13; and N,=13x 17, The S:'.rrmgzppliﬁ—

GO0 o e e
Ve DIKD5=D3HD.| i ].!-I = I_IE- e T 63

(iii) or, at the very outset, i.e. without L.C.M. etc.:
- 52 B
5 il dx—15 7
». L.H.S. N = 561—340=221; and
R.H.S. N = —364+ 585 =221
*. The Siitra applies straightaway:

the conditions
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S (xef5) (dxH-11) = (4x—15) (Ix=T)
oo 1253153555 = 12x2 = 73x-- 105
o 12050 =58
Note: In the second method, note that
Ny=Ny=Dy—D; and N;=N, = D,— D, tests,
The general formula applicable in such cases is:
m-=n , p—q m—n A p—q
X+p  x+n  x4q i x+m

) B __L_ _!_ = o 1 1
- (m—n) (I+P :-:+=,|) (p—q) (x—hmh ;.H_ﬂ)
. (m=n)(g—p) _ (p—q)(n—m)
" (x-+p) (x-+q) (x-Fm) (x+n)
As the numerators are the same,
.. The Sitra applies

S (x+p) (x+q) = (x+m) (x+n)

X o= mﬂ—pq
p+q—m—n
1 8 6 3
4 ; L
S e -y Bl e 2
, 6
s 6 24 24

12x~6 " I2x—2 " TZ—4 T1Zx—3
', In the final derived equation,
L.-H.S5. N=24; and R.H.8. N is also 24
.. The Sitra applies.
S 12x = 12-12

=0 x=0

(i) “Vilokanam', i.e. mere observation too will suffice in this
case.

3 2 3 2
5 [ = =
) 31+!+2.1:—-1 3:-:—::',]_21{+1

(i) HE;? the resultant N is the same 1 on both sides,
'.I cs

o B SR L= 6x2— TR -2 1, 12x= 1 o, x=qk
(i) or, by cross-multiplication at the very outset and Shnyam
Samccaye, 12x—1 ~0 2 Amasde
e 3 5 ]
{u} e e — . 1-5
:'-Jt—i-ri_f 3x-1-1  5x43 2 13x--2
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(i) or by cross-multiplication at the very outset and éﬁnmm
formula, 5
-*1 ]EE+15=ﬂ :. = "-E-

12x24-19x+7 | 12x%4-x--3 2-'-1?'.’14-14?{—[—13_[_ 5x%4-6x42
O —5g T =1 1&x+] 1

= By Paravartya division twice over.
3 4 12 1
31+4+ dx—1 12:-;+1+:-L+1
12 n 12 12 " 12
12x416  12x—3 12x+41 12x412
. By Sinyam Siitra, we immediately obtain:
13

2(x413=0 . X = — 5T

Note: The cross-multiplication and *Sinyapy’ method is so
simple, easy and straight here that there is no need to iry any
other process at all. The student may, however, for the sake of
practice try the other methods also and get further verification

therefrom for the correctness of the answer just hereinabove
arrived at.
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gimultaneous Simple Equations

.-'-'--_

Here too, we have the general formula applicable to all cases
inder the ‘Paravartya’ Siitra and also the special Sitras applic-
sble only to special types of cases. .

THE GENERAL FORMULA

The current system has a fairly satisfactory method—known
as the cross-multiplication method—for solving of simultaneous
simple equations, which is somewhat akin to the Vedic ‘Para-
yartya® method and comes very near thereto.

But even here, the unfortunate drawback still remains that, in
spite of all the arrow-directions etc., intended to facilitate its use,
the students and sometimes even the teachers of Mathematics
often get confused as regards the plus and the minus (+and—)
and how exactly they should be used: and, consequently, we find
most of them preferring—in actual daily practice—the substitu-
tion method or the elimination method by which they frame new
equations involving only X or only y. And this, of course, does
not permit a one-line mental-method answer; and it entails the
expenditure of more time and toil.

The Vedic method by the Pardvariya rule enables usto give the
answer immediately by mere mental Arithmetic. Thus,

2x+3y= & }
4x+ 5y =14

The rule followed is the “Cyclic™ one.

(i) For the value of x, we start with the y-coefiicients and ?he
independent terms and cross-multiply forward, i . rightward, 1.e.
we start from the upper row and multiply across by the Jower
one, and conversely; and the connecting link between the two
Cross-products is always 2 minus. And this gives us OUt
n-uﬂ'l'.‘.‘t'ﬂ‘lﬂr;



140 Vedic Mathematics

(i) For finding the denominator, we go from the upper yq,
across to the lower one, i.e. the x-coefficient but backward, ; .
leftward. Thus, _
7x+3y= 871 .. for the value of x, the numerator is 3x 14
4;.;+53r=14} 5% 8=2; and the denominator 15 IX4—-2x 53

In other words x=2=1. . ;

And, as for the value of v, we follow the cyclic system, 1.e. start
with the independent term on the upper row _tuwatds the x-co.
efficient on the lower row. So, our numerator 1s!

8xd—14%x2=32-28=4
And note that the denominator is invariably the same as before
(for x) and thus we avoid the confusion caused in the current

system by another set of multiplications, a change of sign ete. In
other words, y=4=2
x—y=T7. —42—-14 _ =56
{2}53+23=42]'“ ater = o ~u fa
35—-42 —T_
= =3
@ 2+ y=3 } _40 2 )0

3x—4y=2 [+ %7 3F8 0T
andy = =4 11, J

andy = 1

11 11
sx—3y=11] . _27+55 28
@5y of X = =Tgrm- T4
andy = 55_45:: 21 -1
y —

x-+6y=28) . 604112 172
i ‘?x—-‘h'*lﬂ} Sl == el St 1

andy _ 196110 _ 86 j

% %
A SpeciaL Type

There is 2 special type of simultaneous simple equations which
may Involve big numbers and may therefore seem “hard” but
;"rhlﬁ. OWIng to a certain ratio between the coefficients, can be
cadily, 1.e. mentally solved with the aid of the Siirra q‘@‘éﬁf "‘FT
WA (Sinyam Anyat) which cryptically savs: If one is i0
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An example will make the meaning and the application clear:
ext Ty 3}, G
19x-+ 14y = 16
Here we note lhaf the y-coefficients are in the same ratio t
each other as trhe independent terms are to each other. And 1};
Sifra SAYS ﬂlztt, in such a case, _lhe other one, namely, x=0. This
gives us two simple equations in y, which gives us the same value
_g_fur ¥ Tl'l'llEK='ﬂ; }r=5-
¥.B.: Look for the ratio of the coefficients of gne of the un-
known quantities being the same as that of the independent
terms on the R.JILS.; and if the four are in proportion, put the
other unknown quantity down as zero; and equate the first un-
known quantity to the absolute term on the right.

The Algebraical Proof is this:
ax+by=bm
ex-+dy=dm|
-, adx+bdy=bdm
bex-+bdy=bdm §
s x(ad—be)=0. x=0
and y= m}

A few more illustrations may be taken:
(1) i2x+ 8y= ‘i‘} Here, *.* 8:16::7:14 mentally

16x+16y=14 s x=0
and y=1]
(2) 12x-+78y = 12] Here *~ 12:16::12:16 mentally
[6x-4+96y =16 SoK=1]
and y=0

(3) 499x4172y =212
9779x - 38Ty =477
Here 172 =4 43 and 387=9x43 ] .~ The ratio is the same.
and 212 =4 53 and 477=9x 53
S x=0
and y=33 ] :
Note: The big coefficients of need not frighten }‘55
N.B.: This rule is also capable of infinite extension and may
be extended to any number of unknown guantities.
Thus,
(1) ax+by4-cz=a ~x=1
bx—[-c.}'+az='h1 y=0
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(2) ax-+by+ez=emy . x=0
ax-ay-+fz =fn1} y=0
mx+py-+qz=qm) and z=m

(3) 97x+4-ay+43z=am > x=0
49979x4-by+(p-+q)z=bm y=m

49x(a—d)*+cy+(m—n)fz=cm) and z=0
N.B.: The coefficients have been deliberately made big ang
complex but need not frighten us.

A SeconD SpeciAL TYPE

There is another special type of simultancous linear equations
where the x-coefficients and the y-coefficients are found inter-
changed. No elaborate multiplications etc., are needed here. The
axiomatic Upasitra dsaq-sgasaareat  (‘Sankalana-Vyava-
kalanabhyiam’) which means “by addition and by subtraction™
givesus immediately two equations giving the values of (x+4¥) and
(x—¥). And a repetition of the same process gives us the values
of x and y! And the whole work can be done mentally. Thus,

45x— 23y =113

23x—d5y = 91}
». By addition, 68x—68y= 68 (x—y) = 204 ., x—y=3
And by subtraction, 22x+22y = 22(x+y) =22 *, x+y=1

e o

and y=-—1 }

_ Nete: However big and complex the coefficients may be, there
is no m:._:luplma.tinn involved but only simple addition and simple
subtraction.

The other special types of simultaneously linear equations will
be discussed at a later stage.
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Mjscellﬂllﬂﬂllﬂ (Simple) Equations

e

e —

There arc other types of miscellancous linear equations which
can be treated by the Vedic Sirras. A few of them are shown
alow.

First TYrE

Fractions of a particular cyclical kind are involved here. And,
by the Paravartya Sitra, we write down the numerator of the
sum-total of all the fractions in question and equate it to zero.
Thus,
1 2 3

O et e T E=IED

Here, each numerator is to be multiplied by the factor absent
from its denominator. This is usually and actually done every-
where but not as a rule of mental practice. This, however, should

be regularly practised; and the resultant numerator equated to
Zero.

In the present instance,
(x—3)4(2x— 2)+(3x— 6) =6x—11=0 ", x="
The Algebraical proof is well-known and is as follows:
P + q n r
(x+a) (x+b) ' (x+b) (x+¢c)  (x+c)(x+a)
. P(x+4c)4-q(x+a)+r(x+4-b)
(x4a) (x+Db) (x-+¢)
~ ¥p+q-+1)+4-(pe+gatrb) _,
(%4a) (x+b) (x+c)

* % —(Pci-ga+-rb)
p-q+4-r

I'h . N
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Each N multiplied by the absent number with s;
N+ N, + N,

As this is simple and easy to remember and to apply,
can be done mentally. And we can say, x = 11.

A few more examples are noted :

X = gn rE?ETE-I:q

lh.'E- wﬂrk

1 3 5

“j{x—lj (x— 3] (x— 3}{:-:~5}+{x—5j [:-:-l]c'ﬂ
2 _ 33415 23

T iF3s 9
2 3 i

( ]{x- 1) (x+2]+ (x42) {x-d]_]_ (x—4) (x— l}glﬂI
oy 84+3-8 , ,

O e et e =0
(x=3)(x—4)  (x—4)(x=9) " (x—9)(x—13)
. _ 94+9+20 38
= I+34+5 9
A few disguised samples may also be taken:

1 5 3

“}1'-]-33.-]—2 T x%-}-5x+4-6 + X*+dx-+4-3 =0

.. mentally

SN TN M. SR SR
GID G GF) () GF D)
vy —3=5-6 -1
2 14543 9

1 1 1
@ ﬁx’+5x+1+ 12x34-Tx+-1 + 8x24-6x41 =0
. mentally
| | 1

[2:-1'-1}[3::41} (31+l}[41+1} (dx+4-1) (2x+1) =
S Ix+3=0 1, x=—1

3 2 1
{ J{x+3}2_22+ {:{-I-"l]’- 1=+ [x+2}=_ 1==D
. mentally 2 SR

o S eyt GI 6D
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x4 — x+-8 1 x+6 3
# G x+3) GFA &5 EEH )T T
= mentally
xtpdx x4-8x XLy
GFDGHY) G 6y s gy -0

-3 —15 -3

. 'u

.+ mentally xED [x+3]+ (x+3) [:-:+5}+ (x+5) {‘-'l-l']}:ﬂ
_15H15+15 —45

—3—[5 5 23
_x=3 x—3 X—4 3
{5‘:{1 U[?:‘E."J {1 2]-[1 3}+{:{-33 x=1 =x
) —6 =
”memﬂ?( —1}{1 5T = =2) (x—3) (x-a}{x—n:‘:"
_ —6—6-6 18
T —2—6-3 11
x—4 x—9 x—7 3
O EIEs oD x
; =3 - 18 -6 5
s, mentally -— o= &= o i o % =gy 0
. e ‘IE—IEjEE_:E
. —3—=18—6 27
x—6 x—8 x—1 3
™ (x—2) {1—3}_]_ (x—3) (x—4}+ x—4) (x—2) x+I
. 5 —~12 —20 -15
~ mentally G =S G- d D &)
—48—40—45 _ 133
ey | e T e i
35x4-23 63x-+4-47 45x-131
{Ejiﬁx D (7x=1) {?x—l}(gxal]""wx—lHﬁ:-c—l} x—1

; {35;{“-—12}:—23 B } {ﬁﬂﬂ“-liﬁ; ‘*1?]_ 1}+
SxX—1) (7x—1 (Fx— 1L ox— 4
(3% ) (/X ) 452 _ 1dx— 31 o5 },ﬁ{}
{{93-—1}{51—1} 4

: 3 G - — -
¢ {i‘t—l]{?:-:——ll—l_ {T;-:—i}[ﬂx—-l]'+ (9x—1) (9% 13

- s B ] ey .
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A sccond type of such special simple cquations is one Wher,
’ 1 1 I l factor:
we have Ao + 45 = AD+ e and the factors (A, B, Cang

D) of the denominators are in Arithmetical Progression, The
Siitra gmeazaaser  (Sepantyadvayamantyam)  which Meang
“the ultimate and twice the penultimate” gives us the Answey
immediately, for instunc-::I ;
1 . " l
GG CFAGTH GFD (1) GFI T
Here. according to the Sitra, L+-2p (the last--twice the
penultimate)=(x+5)+2(x+4) =3x413 =0 * x — — 41
The proof of this is as follows:
1 l B I 1
(X+2) {:r.+3}+ (x+2) (x+4)  (x+2) {x+5}+ (x+4-3) (xF3)
I l 1 I

* XF3 x+3) XF2(x+5)  (x+3) (x+4)  XF)xTI)

o ] 2 -y — 1
T X2 {{x—!—ﬁj {x-]—ﬁj}_ X-+4 {{x—i»ll (x+3)
Removing the factors (x 1-2) and (x4-3)
N T
x+5 " x+4 % LT F - L+2P=0

The General Algebraical Proof is as follows:

[ I I [
N RER Y ol E-E—i- Tom (where A, B, Cand D are in A.P)

Let d be the common difference.
O I 1 1 1
- 1 i =i + ey T
A{&I.—d} A(A+2d) — A(AT34) (A-d) (A-2d)
W A | - l o
"AASd) AAT3d) T (ATd)(AT2d) A(AT2d)”

. _i{ 2d . —d
i A_ M—'r-d}{Ar,-'—Sd}} " A+2d A(A+d)
l'f':mcu”mg the factors A(A 1-d} of the denominators and d of
the numeraio rse !

|

— T
T
il ——
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Another Algebraical proof’:
1

1 1
1 iy v e s
5+ AC™ AD " BC
1 | 1
S~ AB AD BC AC
1 {D—B }_ _I{A-]l
‘.E{ BD | C AB‘}
But . A, B, C and D are in AP
+ D-B=—2(A-B)
-1—2}= :El— 2C4+D=0,ie 2P+L=0
A few more samples may be tried:
{I}EE—I-T:-L—J—IE_—I_
. mentally
EE3) (x+4) " (x 3 (x4 (xF3) (xF6) ' (x+4) (x+3)
o 2P L= (2x+10)+(x+6)—0 7, x—=—5]
1 1 1
@ (2x+1) {3x+2}+ (2xF1)(@x+3)  (2Zx+1) (5x T
1

12—["3}{'1-_15 ¥ 0y 18 + X 1-0x 420

(3x+2) (4x+3)
10
o 2P+L=(8x+6)—(5x+4)=13x+10=0 ", x = — 33

TuirD TYPE

A third type of equations are those where numerator and
denominator on the L.H.8. barring the independent terms stand
in the same ratio to each other as the entire numerator and the
eiitite denominator of the R.H.S. stand to each other and these
can be readily solved with the aid of the Upasaird qﬁqﬂ‘ﬁ.‘q’
(Antyayoreva) which means, sgnly the last terms-, 1.6, the abso-
lute terms. Thus,
X2 x-1 _ x+1
XEf3x+3 x+3
Here, (x24+x)=x (x+1) and (x*43x)= x(x+3)
. The rule applies, and we say.
X1 ]

e A=l

X43 3
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The Algebraical proof is as follows:
ACHD A _AC _ D o hidend
SCIE ~ B Be —p (PFHmicend)

Another Algebraic proof is this:

AC+D A | S—
5CTE ~ B ABC-[—:LE .:;c+

e HE"BD ' B T E

A few more examples may be taken:

3x4+-5x+ 8  3x+5 8 | 4. .
{I}SIQ—I_EE.—F'IE '=5.I_[_G—E,. "-II—IE....H» 3
2-2x—3x2  3x42

2
@ x—ee ~ &5 2 T

o) 8l1x*+108x+2  3x+4 2 poee —18
S4x*+-27x+5  Zx+1 5 11
SEx*+87x + 7 2x+3 71,

O S Tasar ~ &S 1

) 158x2+237x+4  2x+3 4 —
395 +474x+4  x+6 4
l-px 24pgx—pigx* 2 |

O T=gx = Z¥par—pgr ~ 7 70

m(h_[_E}a ~ i_].__:; o dxE4-12x+ 9= X-+3 = 9 . e - 15
(_31+5}: x+5 " 4x=}-20x+25 x+5 25 °° “§
@) &+ (x+6)_ x+7
(x+4-3) (x+3) x+8
s X4+ 6 x4+7 6
“ XF8xF15  xF8 15 X= 6%

Note: By cross-multiplication,

(x+1) (x+6) (x-+8) = (x43) (x+5) (x+7)

Here, the total of the binomials is 3x+-15 on each side. But
the Sin vant Samuceaye Siitra does ot apply because the numbet
of factors in the original shape is 2 on the L.H.S. and only on*
on the R.H.8. “Antyayoreva’ is the Siitra to be applied.

(#) (x+1) (x+2) (x+9)=(x+3) (x-+4) (x+-5)

wnyam Samuccaye® Siitra d : g
reva' formula fo $ha me o o 1 ?ES i apply. The ‘Antydl
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D) (x+2)_ X3 % =1

= e

{{;ﬁm_ 9 W0 = —
2) (x-+3) (x+1 D)= (x+4) (x+5) (x--7
(10} {'ijf;: case 15 exactly like the one :lb:}w:(. ]

lr3+2}{-’x+3]= Xt 5.= 6 | - 74 37
S (7)) x+11 T D e =3I
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Another type of special fraction-additions in connection with
simple equations is often met with, wherein the factors of the
denominators are in Arithmetical Progression or related to one
another in a special manner as in summation of series. These we
can readily solve with the aid of the same *““Antyayoreva” Siitra
but in a different context, and in a different sense. We therefore
deal with this special type here.

(1) The first sub-section of this type is one in which the factors

are in AF. Thus,
1 1 1

(x+1) [:I-L+2}+ (x+2) (x+3]+ (x+3)(x+4)
The Sitra tells us that the sum of this series isa fraction whose

mumerator is the sum of the numerators in the series and whose
denominator is the product of the two ends, i.e. the first and the

last binomials.

and 50 on.

m » 3
S0, in this case, 85;= 1) (x+9)

The Algebraical proof of this is as follows:
1 1 x+4-3+4+x-+1

bt et P ) erD (F2) ()
2(x+2) B 2
" BFDFD) F) xFDxE) ;
‘Wherein the numerator is the sum of the original nu "”E"ﬂt.‘:' s mfa]
the denominator is the product of the first and the last binom!

factors, !
; 2 —— Tl
Adding t, to the above, we have W}"' (x+3) (+4)
3
- 2XBx+1 3643 e T
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Continuing this process to any number of terms, we find thyy
the numerator continuously increases by one and the denoming,
tor invariably drops the middle binomial and retains only the
first and the last, thus proving the correctness of the rule j,

question.

1 11
b= GIDGFD) xFl xt2
! 11

b= GFDHFI X2 x+3

and so on to any number of terms.

Note: The second term of each step on the R.H.S. and the
first term on the next step of the L.H.S. cancel each other and
that, consequently, whatever may be the number of terms we
take, all the terms on the R.H.S. except the very first and the last
cancel out and the numerator being the difference between the
first and the last binomial, i.e. the only binomials surviving is the
sum of the original numerators on the L.H.S. And this proves
the proposition in question.

A few more illustrations are taken.

1 1
M (x+3) (x+4)+ (x+4) (x+5)+ o
4

SoS, =

3+
1 1
2 xz—3x+2 + x2—5x+6 T
1 1
~ e T3
5

<. Sg

T x=1)(x—6)
1 1
) arsa T o rx 128
1 1
“ & D T @)
4

o.o S‘

+ ...

T xT14x+13
1 1
O araer Termetw

. S e 4
=24 (x+a) (x+5a)
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T S !
9D GFDGRED S Ryt
fere, there is a slight diﬁ"e.r-:nm: mthe structure of {he déiiae
. ator i the A.F. is not in respect of the independent term in
’:_ pinomials 48 in the previous examples but in the x-coefficient
;[5;'1f'- But this makes no difference as regards the applicability of

.[‘h,: Sﬁﬂrﬂ' 3

S8 = GED (XFD)
The first Algebraical proof of this is exactly as before:

3
f, = 4t =
=g earn ¢ Tt = ey andso on.

The addition of each new term automatically establishes the
pmpusitinn.

The second Algebraical proof'is slightly different but follows
the same lines and leads to the same result:

1 L. | 1
WY EFDExFD X (-1—!-!" ﬁE-H)

1 1/ 1 1
= TGl X (3x+1 - 5:-;+1) A sn-an:
Note: The cancellations take place exactly as before, with the
consequence that the sum-total of the fractions
I (2cx) c
"2 D,xD: D;xD,
which proves the proposition.
1 1
©) (x+a) (2x +3&f|+ (2x-+-3a) (3x-+43a) T
Here, the progression is with regard to both the items in the
binomials, i.e. the x-coefficients and the absolute terms. But this

too makes no difference to the applicability of the formula under
discussion,

3
(x+-a) (4x+T7a)
(7) — 1 o ! Wy QLT
(3x+a) (5xFa) " (5x+a) (Ix+2)
Q. 3

i' S_"l
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TN, P —— 1 -y
(*+x4+1) (*+2x+2) 7 (x TI4D) (B LFH T

Seemingly, there is a still preater difference in the structyre
the denominators. But even this makes no difference tg thy
applicability of the aphorism. So we say:

4
T (D) (FE5x D)

Both the Algebraical explanations apply to this case also. Ang
We may extend the rule indefinitely to as many terms and to g
many varicties as we may find NeCessary.,

We may conclude this sub-section with a few examples of its
application to Arithmetical numbers -

) 1 1
D e+ s Hoxmot o o

In a sum like this, the finding of the L.C.M. and the multi-
Plications, dlvisions, additions, cancellations etc., will be tire-
some and disgusting. But our recognition of this series as coming

under its right particular classification enables us to say at once:

4 4
8y = TRl ﬁand 50 On.

S,

Note: Thie principle explained above is in constant requisition
in connection with the “Summation of Series” in Higher Algebra
etc., and therefore is of utmost importance to the mathematician
and the statistician, in general.

Firru TyPE

There is also a fifth type of fraction-additions dealing with
simple equations which we often come across, which are connec
ted with the “Summation of Series” as in the previous type and
which we may readily tackle with the aid of the same Antyayoren
formula.

The characteristic peculj arity here is that each numerator is the
difference between the two binomial factors of its denominator:
Thus,

a—b b—c ; c—d
x (Fa)(x+b) T EFO) (xro) T (X4-c) (x+d)
r

- |2 —

te s




Simultaneous (Simple) Equations 1
53

1gebraical explanations h :
I:IL:::.I-L::II i:;;"‘“ bE repeated here. ereof are exactly as before
an -H:‘[-_'j________i_. }"‘"I —E_. Z =
@ G ary) (@Y (@+2)  (a+z) @@tw) T
x—Ww
5 = @) (atw)
1 , < n 14
AFFnE+8) " x48) x+10) " (x+10) (x+24)
17
8 = G (x+29)
3 , 9 i 27
@ EFD 10 | &0 (H9) T GFI9)(E+49)
& 99
GG (Fd5) T

{7 138
v 9T (XD (k- 145)
_b d -
) 5y + I, ...
(px+a) (px-+b) ' (px+b) (px+c) * (px-+c) (px-+d)
: a—d
< 5 (px-+a) (px-+d)

Note: (i) If, instead of d, there be an a in the last term in this
case, the numerator in the answer becomes Zero; and conseguent-
Iy the L.H.S., i.e. the sum of the various fractions is Z¢ro.

(i) The difference between the hinomial factors of the den::'--
minator in the L.H.S. is the numerator of each fraction; and this
characteristic will be found to characterise the R.H.S. _alsu-

(iif) The note at the end of the previous sub-section Tegar-

ding the summation of series holds good here too.
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Quadratic Equations

e .

n the Vedic mathematic Siitras, calculus comes in at a very
carly stage. As it so happens that differential ealculus is made
yee of in the Vedic Safras for breaking a quadratic equation
down at sight into two simple equations of the first degree and as
wenow go on to our study of the Vedic Sitras bearing on quad-
ratic equations, we shall begin this chapter with a brief ex-
position of the calculus.

Bezing based on basic and fundamental first principles relating
to limiting values, they justifiably come into the picture at a very
early stage. But these have been expounded and explained with
enormous wealth of details covering not merely the Sitras them-
solves but also the sub-sitras, axioms, corollaries, implications
etc. We do not propose to go into the arguments by which the
calculus has been established but shall contend ourselves with an
exposition of the rules enjoined thercin and the actual modus
operandi. The principal rules are briefly given below:

(i) In every quadratic expression putinits standard form, 1.c.
with 1 as the coefficient of x2, the sum of its two binomial factors
i5 its first differential.

Thus, as regards the quadratic expression X*— 5x4-6, we know
its binomial factors are (x—2) and (x—3). And therefore, we can
&t once say that (2x—5) which is th2 sum of these two factors 15
5Dy, i.e. first differential.

(7i) This first differential of cach term ca %
multiplying its s (Dhwaja) wr (Ghata), i.c. the powe
7% (Anika, ie. its coefficient) and reducing 1t by ant

T!h‘fﬂ as repards x?— Sx--6

%" Bives 2xy — 5x pives —5;and b gives ZEr0-

WDy=2x—s,

n also be obtained by
r by the
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(#) Defining the discriminant as the square of the coepy

I
of the middle term minus the product of double the fipg t:f
efficient and double the independent term, the text then lays dg

the very important proposition that the first differential iy equy
to the square root of the discriminant.

In the above case x2—5x-4-6 =0

S 2 =5 /25 =24 = %1

Thus the given quadratic equation is broken down at g ght
into the above two simple equations, i.e.2x—5=land2x—5- _;
SLXx=2or3

The current modern method dealing with its standard quadrat;;
equation ax®--bx-f-c =0 tells us that,

—b4-+/b*—4dac This is no doubt all right, so far as it goes:

2a " but it is still a very crude and clumsy way
of stating that the first differential is the square root of the dis.
criminant.

Another Indian method of medieval times well-known as Shree
Shreedharacharya’s method is a bit better than the current
modern methods; but that too comes nowhere near the Vedic
method which gives us (1) the relationship of the differential with
the original quadratic as the sum of its factors and (2) its relation-
ship with the discriminant as its square root! and thirdly, breaks
the original quadratic equation, at sight, into two simple equations
which immediately give us the two values of x!

=

A few more illustrations are shown hereunder:

(1) dx*—dx+1=(2%x—1) (2x—1)=0 ~, 8x—4=0

(D) Tx*=5x—2=(x~1) (X+2)=0 , 14x—5=3 /81 =49
(3) X = 1x+10=(x—10) (x=1) =0 %, 2x—11=+44/81 = £9
{(4) 6x*-}-5x—3=0 , 12x+45=44+/97

(5) TE=9x—1=0 , 14x—9 = 4 1/T09

(6) Sx*~Tx~5=0 ., 10x—7=++/149

()93 =13x=2=0 ', 18x—13 =4 4/34]

(8) 1Ix*4+7x+7=0 =, 22x+4+7 = 4.4/ =350

(9) ax*Lbx-Le—0 e U e ——
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. ortion of the Vedic Siitras deals alsp with the binom;
., factorisations, factorials, repeated factors oo
thed " . differentiations, integrations, successive diﬂ{rrcnﬂl']-hfmcd
in!cgraticms by HIETIE ﬂf-c]?ntlilnu?d fr:mti::_nns . Bt j“Z:‘uz:;:':
e con cerned only with the just hereinabove explajned yse

of the differential calculus in the solution of quadratic equations
In gcﬁEfﬂI because f::f ﬂl'f: relationship D, = 4-4/the disen minant.
The other applications just referred to will be dealt with at later
stages: g

This calculus method is perfectly general, i.e. it applies to all
cases of quadratic equations. There are, however, certain special
ypes of quadratic equations which can be still more easily and
¢till more rapidly solved with the help of the special Sirras
applicable to them. Some of these formulas are old friends but
in a new garb and a new set-up, a new context and so on. And
they are so efficient in the facilitating of mathematics work and
in reducing the burden of the toil therein. We therefore go on te
some of the most important amongst these special types.

FirsT SPECIAL TYPE
(Reciprocals)
This deals with reciprocals. The equations have, under the

current system, to be worked upon laboriously, before they can
be solved. For example:

1 17
(x+ = d
According to the current system, we say:
Coxi] . 17
K 4
Sodxtp4=17x
G AxE—1Tx 44 =0
S (x—4) (dx—1)=0 , x=4or 1/4

Or ' yo 1?:[:f§32‘—ﬁ4= 17E1;15=4m. 1/4

" - o aradie mathe-
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matics, we observe that the L.H.S. is the sum of two rec

p Proea),
split the 42 of the R.H.S. into 441 and at once say, b

x -+ _::. wd4} . x=4or 1/4. It is a matter of simp],

ohservation and no more.

{2) x+—1—= 2—§-=5% s x=50r}

X I-J—-l:_ g R
{3 :c+1+ - 32/9=02 ., =] Qorlf9 - x=%or -3

x+41 :an 37 . x4
R R, s Rl Sl LR,
x+4  x—4 10 g :4:+4

Gort.,. x=—%1or -4

(3) x-4+x—|-4= 5 =3 =3or}. x=8o0r—8
(6) :-:+-l— %

Here the R.H.5. does not readily seem to be of the same sort
as the previous examples. But a little observation will suflice to
show that 4* can be split up into 3§

5% +=b+h o x=For]

(M x4+ +=i=4+1 2 x=dor}
x+5  x-6 .|'_5
@itz ~io=iE & pop=tordx=—Alor-§
X , x+1 169 X
(9}x+l+ == ey Al T ;r_.=JE or & . x=Eor
- 11
-11 2?: ” 193_12 EI—l—-]]_
{lﬂ}h 11+ -ER‘I"EI 34 T ’,.’-__J"' 1% s m:%ﬁ or :‘15_
“ X +20
ek 10
|
My ca
(11) x > 5

Here the connecting symbol is a minys. Accordingly, we say:

—'—_r—.ﬂ.___ #
$ x = JE..J:=-EQ1'—§

NB. 2 Note the e afits s 4 1. [P T e iy o
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f
o Onthe R.H.S, and will

~4f=3-5 - x=}or -1
; 43 s s_1._*%
& =R = T ™™ Wae s =8 s
i R = L e
40 %47
47 _ AT _ag B T Bnp Ty,
{14}m x+? 1] 7 1] 1_1_9 7 ﬂl-x"—_lﬁ :}r —-5-’-1

g8 OF —fnx=1or — 32
Note: In the above examples, the L.H.S. was of the form

_E:}_ + __E,; and, consequently, we had to split the R.H.S. into the

a b
came form (Ti T)
a*4-be

And this, when simplified, = 5

In other words, the denominator on the R.H.S. had (o Le
factorised into two factors, the sum of whose squares or their
difference, as the case may be is the numerator.

As this factorisation and the addition or subtraction of the
squares will not always be easy and readi lypossible, we shall, at
a later stage, expound certain rules which will facilitate this work
of expressing a given number as the sum of two squares ot as the
difference of two squares.

SecoND SPECIAL TYPE
(Under the Sunyam Samuccaye Formula)

We now take up a second special type of quadratic equations
which the Sinyam Samuccaye Sufra can help us to solve, at sight,
4 sort of problem which the mathematicians all regard as
“Hard™! _

We may first remind the student of that portion of an carlier
thapter wherein, referring to various aPFIi“atf‘:'“E_c’f it Smnu;
“aye Siitra, we dealt with the easy method DY which £4¢ ﬂm‘i-
Ofthe sum_of the numerator on the one hand and the drﬂﬂg?:fu;--
0T on the other pave us one root and the oneness of the di
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ence between the numerator and the denominator on both g
gave us another root, of the same quadratic equation. W nﬂr.'g
not repeat all of it but only refer back to that portion of 5
volume and remind the student of the kind of illustrative P nlf
ples with which we illustrated our theme: :
1 Ix4+4  5x+46 |
V& " =3
Tx+5  9x4T | 5 o 0r or T 100
(2}9};__5—71’!_” - lex+4-1 «or 2x
Tx—=9 97

. L _ 1&=0- =)
B 5—p= e—7 - 16x—16=0; or 5x

16x—3  2x—-15 ) ¥
D577~ a5 - 18— 18=0; 0r 9x~10=0

8x4-10=0; or 3x+3=0

THIRD SPECIAL TYPE

Thereis a third special type of quadratic equations which i
also generally considered “very hard” but whereof one rootis
readily vielded by the same old friend the “Samya Samnccaye”
Shrra and the other is piven by another fricnd—notse old,i.e.the
«Sianyam Anyat™ Sitra which was used for a special type of
simultaneous equations.
Let us take a concrete instance of this type. Suppose we have
to solve the equation:
2 5 4 |
m_]_ ;S T x+4+ x--1
‘The nature of the characteristics of this special type will be
recognisable with the help of the usual old test and an additionsl
new test.

The tests are: § + ¥ =4-1-1; and 42l

In all such cases, “Siinyam Anyar* formula declares that ont

root is ZLT0, and ”',I.E “S-ri_rﬂ}'lﬂm Sﬂm“fﬂﬂ' 1511 = i
ye' Siitra says:
Dy+D,=0 -, 2x4-5=0 JoX==21 :

The Algebraical proof hereof is as follows ;

E +
X+2 (by simple di?isiﬂn] =] —

X
— * and n.

SB,{I—--.L _J_{I__ ﬁ]. X I}
il b= 21 -5

ar
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. ﬂving 1—' :’:I.HEI l - 1 ft'l.'_‘l-Tl'I. 1 -

- [R'-*T“H terms =0 both sides) x, the comma
factor of & T n
I

; ::1.';11,—-'5-—=-—i-—'-_._
qnd on its TEM X2 " x4+3  x447T ;.;_Il

. By the Samuccaye formula, 2x4-5 (-

wote: In all these cases, Vilokanam, ie. mere observation o
us hoth the roots. =Crvalion gives

& few more illustrations ot this special type are given
3 . 4 2 5
O3 78 x2 T x5 - X~0or =3
1 | 2 i

@D a1t xr1 =12 6x+i

N 2%
Now, °. mx—lr—l_s_handsﬂan.

. XX 3x 3x
Il TRTL Rz ETHEI
s x=0
or by cross-multiplication 12x-+5 or (36x+15)=0
;. ox=-=15/12
a b a—c b+
(3]I+H. T x-+b T xta-c + x-=b-+c
s x=00r —}(a+b)
@ a—b + b—¢ _ _atb _Dbic
*ta—-b ' x+tb—c =x+tatb t—-b—¢C
- x=0or }(c—a)
a+b L b+c  _ b, _atc
X+a+b ' x+b+c x+2b  xtaTe
s x=0o0r —1(a+2b+c)

(3)

FouRrRTH SPECIAL TYPE

qu adratics

And again, there is still another special Lype of quats =y

which are “harder” but our old -friends «Sanyam Anyat

t‘PﬂrE}rd”.};ﬂ" (MEI'EEI‘] can hE]F us to Sﬂl'lr"ﬂ ﬂ-ﬂﬁi]}r. ;
Note: Apropos of the subject-matter of the immed’“tﬂy I_p:]:;

s ol ekt sk Avd aneclah Eypies Jet S NOW FURE i
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" 2 | 3 e 5

equation 2 X+3 %45 ‘
alike, but really is nof, & guadratic eqummn_ of the type g, "
with in the previous sub-section under Simyam  Anyar i
Sinyam Samya Samuccaye but only a simple merger becauge, g
only is the number of terms on the R.H.S. one shortof the nyp_
ber required but also $-4+§48. Itis really a case under Stinyan,
Anyat and Pardvartya (merger).

Here, the test is the usual one for the merger process, je
N,+N, (on the L.H.8.) =N, (on the R.H.S.). Thus,

. This may look, at the gy,

2 4 3 3
X+2 X+3 x+35
-6 — 6 .
. o [ :-‘D _l-. Ex-.'ﬁ=ﬂ
’. By merger method i S

So X=—2}
A few true illustrations are given below:
4 9 23
Mt 5= 53
Here " $4+2=5% ', Yes
2
.. By Division E—%-FS—-}%=5=—§%
» x=0. This can be verified by mere observation.
A & .
of 5T RT3 X313
This result can be readily put down, by putting up each nume-
rator over the absolute term of the denominator as the nume-
rator of each term of the resultant equation and retaining the

denominator as before. Or by taking the square root of each
numerator in the present case.

Thus $=2; §=13; and 32= 5. And these will be our new numé-
rators. Thus, we have the newly derived equation:
Bn),. 0 it
x-—|—2+ x+3 x15
By merger x = — 2}
2 9 25
@) R e x5
Here - i+3 =53 -+ Yes

" by merger, x=— 24
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The gﬂﬁved Eqﬂﬂﬁ‘};‘ 1w
AR
ich i the same as in all the three preceding cases.
+x=00r =24
Note: In the [asE two cases, the first term alope 1$ different and
i, since the quotients # and ¥ are the same, therefore it makes
Lo difference to the result; and we get the same two roots in all
the three cases! i 4
(3) hig-j' X2 dx+1
Here *.' §+#=1 ., Yes ', x=0
- or by division, 500 ¢ £S5 & =

2
MNote that —KEE =4,-32£‘=ﬁanﬂii%%=]:ﬁ
and that these are the new numerators for the derived equation.
2 24 48
y 3 T 7 o i EH I-I ?
o By LEM. et i =g

I 1 2
- Y
Rl L L e e
13 ]
. ) xe=—
<.By merger fmmmre iy
N.B.: The remaining examples in this chapter may be held-
over for a later reading.
a b 2c
@) :Ii-I—E.+ x+b x+c

ee @
Here *, = -

n 1 -— 1 = -—-2— HF Yes
**x4a x+b xX+4¢
a—c , b—C _
* By mcrgerxr[_ﬂ + =Fb 0
; bc4-ca— 2ab
ey ik . ﬂ—l—h—zﬂ
a?—he br—¢t  al-—ct
) Xx-+a+b +:-:+I::--[—r: - xtate

i
B

2 . Yes », x=0
c

D'!G‘
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af—h? bif—c? al-¢f
a—|—-h+ b+c a-+4c
a—b b—c _ _a=C ., .
f XFa+b +x+b—|—c x+atec 7
(@=b) (b9, (b—c)(b=3)

S Yes U, x=0

Here =.°

~. By merger *——— ¢ Tibic =0 and 5o ¢
1 2
O =t bxrd~ oxra
Here by division, we have: d--ax) 1 '1_
d.
aX
4y
—HA
d
b 2
>rd T bxrd | exd
. abe abc Zabe i
** abex-+-bed + abex+acd abex+-abd  *° Yes
o | 1 2
“ D, b, D,
. bed —ab-l:l+ucd —abd
“* abcxtbed | abextacd
., _bd(e—a) ad(b—g)
© befax-d) ac{bx-}-d)
’ €—a _ b—c
" ax4d bx+d
_ ad+bd—2cd
ac+bc— 2ab
% ax4-2d n bx+3d  2ex4-5d
ax4d  bx4+d  Textd
.2 3d Sd
Here °, o 7 i " Yes . x=0
Or by c!ivismn
1 2
3
abcx+bed + abex-acd abex-abd

“+ By me ,lffd_fitld_ acd — abd
rger, B; ( ] =
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2ad{b=—c}
3 ac(bx4-d) v

165
pd(a—¢)

or by mere division Pardvartya at the very first step.
d 2d 3d
m+ bx+d  cx-d
which is the same as No. 6 supra.

. ad-+2bd —3cd
S & Ge+2ac— 3ab

CoNCLUDING LINKING NOTE

(On Quadratic Equations)
In addition to the above, there are several other special types
of quadratic equations, for which the Vedic Sitras have made

adequate provision and also sugpested several interesting devices
and so forth. But these we shall go into and deal with, ata later

stape.
Just at present, we address oursclves to our next appropriate
subject for this introductory and illustrative volume,

solution of cubic and biquadratic equations ctc.

namely the
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cubic Equations

e ———

We solve cubic equations in various wavs:
(i) with the aid of the Parvartya Sqtra, the Lopana-Sthipang
means “by the completion or non-completion” of the square,
the cube, the fourth power etc.
(i) by the method of Argumentation and Factorisation as ex-
plained in a previous chapter.

THE PUrANA METHOD

The Parapma method is well-known to the current system. In
faet, the wusvally-in-vogue general formula x= -bﬂ:‘\; :'—- dac

for the standard quadratic (ax*+bx<4-c=0) has been worked out
by this very method. Thus,

ax*+4+-bx--c=0
S bx C

. Dividing by a, x® +-£-+—a=ﬂ

bx —c
" 2 —_— T —
A 8 - ~
. completing the square on the L.H.S.

bx b* c b® b*—4ac

T T a Tdr " Taa
by* b*—4ac

sfan i
b /b —dac

LXK+ E"" 7a

— b4 4/b*—4dac
K = 2-':1 e llitﬁ "l'r'ﬂ“'
Thic methad of “camnletine the sguare 18 thus q S
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the solving of quadratic equations. But this is only a fragm,

and fractional application of the general formula which i;.-::ma‘?
junction with the Paravariya, and the Lopana-Sthapang Sis t““j
cqually applicable to cubic, biqguadratic and other higher.g;%
equations as well. Sty

CoMPLETING THE CUBIC

With regard to cubic equations, we combine the Parﬁm,m
Sitra as. explained .in the ‘Division by Paravartya’ chapter.ay
the Pirana sub-formula. Thus,

(1) x*—6x2L11x—6=0

Jo X=Xt = — 1 1x4-6

But (x—2)=x*— 6x24+12x— 8

.. Substituting the value of x*— 6x2 from above, we have:

(x=2P = —11x+46+12Xx— 8 =x—2

Let Xx—2=y(and ., letx=y-1+2)

S ¥ie=y S y=0cr4 1. x=30rlor?2

N.B.: It need hardly be pointed out that, by argumentation re:

the coefficients of x*, x* etc., we can arrive at the same answer
explained in a previous chapter dealing with factorisation by
Argumentation and that this holds good in all the cases deall
with in the present chapter.

(2) x34-6x2+11x 46 =0

S X6t =—11x—6

But (x-+2)*= X3+ 6x*+ 128+ 8= — [ 1x— 64-12x L8 —x+-2

-, y¥¥=y (where y stands for x+-2)

Sy=Oorkl/ x=-2 ~3or -]
(3) x*+6x°— 37x+4-30 =0

S X%6x? = 37x — 30

S (XA-2) =X 6xP 412X 4-8 =49x — 22 =49(x4-2)— 120

N.B.: The objectis to bring (x-+2) on the R.H.S. and thus

help to formulate an equation in ¥, obtain the thn:;j; roots and

then, by substitution of the value of x i ¢
; 2rms x
three values of x. of y, obtain the

Sy = a3y-+120=0 ., (y—3) (v*+3y—40) -
Soy=3)(y—=5) (v4+8)=0.. y=30rS5or _=
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Cubic Equations i

{J}ﬁ F;:|+9f= —23x—15
:_: (I+3]a=(f+9ﬂ—]—1?x—2?‘) =d4x-+-12 =4(x+3)
. ys=dy L y=0ord2 x=-3or~1lor -5

{5J1:+gx3+241+15=-:}
o xB4-9x3=—24x—16
& (3P = (9% 27x4-27) = 3x+11 = 3(x+3)+-2
syi=3y+d s Y -3y—-2=0
sy =0 y=—lor2;x=—-4or -1

(6) X3+ 754 14x4-8 =0
& XHTR = —14x -8
So (X3P = (300 2T+ 27) = 2x24- 1 3%+ 19 =
(x+3) (2x+7)—2
S V=y2y+1)-2 ), v -y 1)42=0=(y—1) (:-.r+[;} 5

S ¥=lor—lor2_ x=-2or +44or 41

(7) x*4-8x2+-1Tx 410 =0 ., x*L8x2=—1Tx—10
S (X3P = (x40 2Tx - 2T) =22 10+ 17 =
(x+3) (x+7)—4
S Y=Y (¥ -4 L P-y-dy=4-0 0, y=1or L2
S X==20r—lor -5

(8) x74-10x*4-27x -+ 18 =0
Now ., (x+4)* = (x*+ 12x2+48x-64)
Hence the L.H.8. = (x+¥)*— (2x34-21x-46) = (x+y)*
{(x+4) (2x+13)-6)
L Y=y (2y+9)—-6. (=D (42 (y—3)=0
S y=lor—=2or3
s x=—3or=6or—1

Note: Expressions of the form 13-?:{—]-_5 can be split i]:ftn
¥3—1—Tx-7 ete., and readily factorise. This is always applic-
able to all such cases (where x? is absent) and should be fully

utilised. + |
1*;";1 Piirana method explained in this chapter for the solution
of cubic equations will be found of great help in factorisation;

vl wmre raes AP
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15 1y 15 15
() [3xF6 TI5x+9 Tx+2 Tongs
», The resultant numerator on both sides is 45,
. The Siitra applies.
10—-54 —d44 11
= 13%e= 8 = g ”H:_-ﬁ
(if) or, by cross-multiplication at the very outset and Stnyam
etc., formula, we get 30x--11 and 150x4-55 on the L.J . and
the R.H.S. respectively; and the numerical factor 35 being re-
moved, both give us 30x-+1140 » x=— 11
( 2x-4-11 3. Ox--11 _ 4x4-4 4 3x+19
= ey
(i) .~ By Paravartya division:
1 2 2 1
x5 T xi3- I 3F6
v o . B 2 2
“ &+10 2xF12 X1 %43
.. 41s the N on both sides of the derived equation.
. The Siitra applies.
S (@x-4H10) (2x412) =(2x-+1) (2x+3)
s 3—120 -117 | _ 13
' 18 1§ 2 4
(1) or by cross-multiplication at the very outset and Simyam
Sitra, we have
4x-+13=0 7, x=—12
2x+11 | 15x—47 9x—9 4x+13

® xF 3T Tmi0- =i =13
o= 3 3 3 3
O st oo~ simat 3o
3 3 3 3

“3XF15  3x99 Ix—4  3x—10
In the resultant equation,
. — 14 1s the numerator on both sides.

<« The Sitra applies.
Ay - -

4 5=
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Biquadratic Equationg

pm—

The pmcedu-_l'&ﬂ Pirapa etc., expounded in the previous chapter
for the solution of cubic equations can be equally well applied in
the case of biguadratics etc., too. Thus,

(1) x8-F4x*—25x%2— 16x+-84 =0

oo x3dx3 =25x%L 16x—84

S (K1) =10 At kT  1
=[25:-:""+IE:-;—34]+(5:-:*+41+])=31}1*+2ﬂx—33
=(x-+1) 31x-11)-72

SV =YEly—42)—72 1, y'—31yE+42y-472=0

S y==—1,340r -6

S x==22 30r -7

(2) x5 4-8x3 4 14x*—8x — 15=0
S XELEXS = — 14x24 8x 115
o (X2) =x44-8x34-24x2-L 32x L 16 = 10x24-40x4-31
=(x+2) (10x4-20)—9=10(x+2)*-9
SovE=10y2—9 - y*+lor9 ., y==Llor 43
S X=—lor—3orlor—3

(3) x*— 12x34-49x2— 78x+40 =0
S XS — 123 = — 493 T8x — 40
5 (x—3) =x4— 12x34-54x%— 108x+81
— 5x2— 30x+-41 =(x— 3) (5x— 15)—4=5(x—3)* -4

LY —5y214-0 ., yi=1lord ., y=xlor 32
s x=4orSor2orl

(4) X3+ 16x3 -+ 86x2 4 176x 105 =0
S X34 16x3 = — 86x2— 176x— 105=0
S (xF4)4 = x84 16x3--96x2-+ 256X +256
— 10x2--80x-+151 = (x-+4) (10x+
= 10(x+4)*—2

40)-9
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sy— 10y 49=0 0 yi=lor9 ' y=+41or 43
+ x=—3o0r—5o0r—lor—7
(5) x4 — 16x3491x%— 216x-- 180 =0
s xi—16x% = —91x*4-216x— 180
S (=4t =xt— 16x34-96x2— 256x1-256
=5x*—40x+T76 =(x—4) (x—20)—4=5(x—4)*—4
Ly 4=0 yi=lord n y==+1or £2
S Xx=3orS5orb6or?
(6) x'—20x34-137x2—382x 1360 =0
S X4—20x3 = — 137x21-382x— 360
S (X— 5 =x4— 20x3 1 50x2 — 500%x 1625
= 13x®— 118x+265 = (x— 5) (13x— 53)
S Yi=¥(13y412) ., y=0or y*— 13y—12=0
S Yy=0or(y+1) (y+3) (y—4) =0
S y=0or —lor—-3or4
e X=5,4,20r9.

Note: The student need hardly be reminded that all these

examples which have all been solved by the Pirapa method
hereinabove can also be solved by the Argumentation-cum-
factorisation method.

A SPECIAL TYPE

There are several special types of biquadratic equations dealt
with in the Vedic Sarras. But we shall here deal with only one
such special type and hold the others over to a later stage.

This type is one wherein the L.H.S. consists of the sum of the
fourth powers of two binomials and the R.H.S. gives us the
equivalent thereof in the shape of an arithmetical number. The
formula applicable to such cases is the sqfezmufes (Vyasti
Samagti) Siitra or the Lopang-Sthapana one which teaches us how
to use the average or the exact middle bino

) : : | mial for breaking the
biquadratic down into asimple quadratic by the easy device of
mutual cancellation of the od

+ . d powers, i.e. the x and the x.
A single concrete illustration will suffice for explaining this
process:

(X+T7) - (x-+5)4=706
Letx4-6 the fverage of the two binomials=a
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., (a+D'+@—1)=706

" owing to the cancellation of the odd powers x?

" oo 122242 =706 ., a'+4-6a—-352

. at=l6or —22 ., a=z4ort+/=22
cXx=—2or ~10or ++/"33_¢

N.8.: In simple examples like this, the integral roots are small
ones and can be spotted out by mere inspection and the splitting
up of 706 into 625 and 81 and for this purpose, the Vilokanam
method will suffice. But, in cases involving more complex numb.
ers, fractions, surds, imaginary quantities etc., and literal co-
efficients and so on: Vilokanam will not completely solve the
equation. But here too, the Vyasti-Sumagti formula will quite
serve the purpose. Thus,

The General Formula will be as follows:

Given (x-Fm+n)*+(x+m—n)t=p
;. al+-6a? - (11‘—~%)='3II
—6:£+/36— 4n"+2p

and x,

S at= 3
soge e | —Sy/S0—4nttap

2
Applying this to the above examplc, we have

/1444 — 6438
x=—-6+ .‘/"Ei;ﬂm"_ﬁi N2

which tallies with the above.

N.B.: “Harder” Biquadratics, P2
later.

ntics etc., will be taken wup
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yvfultiple Simultaneous Equationg

—

n to the solution of simultanzous equations in.
crmorz unknowns. The Lopang- -Sthipana Sitra,
fitra end the Paravariya Siitra are the ones that
—s —2¥= ©32 of for this purposs.

by T
L.q

Frrst TYPE
[z ita £rei tipe we have & significant figure on the R.HS. in

iz 0s.iee

c=y ozz sguation and zeross in the other two. From the homo-
===25Ts Z2ro egugtions, we derive new equations defining two of
2evolmgansin terms of the third; we then substitute these

f= :Z= third eguation; and thus we obtain the values of all

o [
RS-

L2
L L
P

e thr2e i mowns.

A seoond mathod s the judicious addition and subtraction of
frozonionzts mult pl'” for bringing about the elimination of one
tzikmann end the retention of the other two.

Intsththese m tthnds we can make our own choice of ths
crk=owm to be eliminated, the multiples to be taken ete. Thus,
(Jz+y—z=0 (A)

z—Sv=2z=0 (B)

Srtlv—z=10 (C)
(i) A-+C gives us: 4x-+3y=10; } 10x = 10

& 24--B gives us: 6x—3y=0 x=1
y= 2

andz= 3

{ii)from A, we have x-Ly=2 }
zrd from B, we have 4x—Sy=—22

v BY Pﬂra‘an,a z=lz;and y=3%2
’::‘4 substitution in C z-+-1iz+z=10/,

-

" 353
x=1
and }-’=2
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(2) 7y—11z—2x =0 vee A
E}r_. Tz—ﬁ.?;:ﬂ was .B
3x-}dy+4-52=335 iy €

(i) Adding B and 2C, we have 16y--3z—70
Subtracting B from 3A, 13y—26z= 0
1820 210
..}’-=T5?*=4,andz=—. 4—5~E=2
.. Substituting these values jn C S ox=3

(ii) .. Ty—1lz=12x 1] ok, i%i-;lé;{;

-39
8y— 7z=6x |andz- _206X = £x
-39
oIS 43lx =35 - x=3
y=4
and z =2
(3) 2x—3y+4z= 0 o (A)
Tx+2y—6z= 0 e (B)
4x+3y+ z=37 wo [C)

(i) A+4Cgivesus: 6x4 5z=37
2A+-3B gives us: 25x—10z= 0 }
Sox=32-2:andz=%25 _5. and y=8
From (A) and (B) we have
(i) . —3ytdz=— 21}

2y—bz—=—Tx
. —40x . _ —25x
S Y= Ty =-1:{,andz--__m
=24x

S 12x4-24x =37 1, x=2; y=8: and z -5

This is one wherein the R.H.S. contains significant figures in
all the three equations. This can be solved by Paravartya cross-
multiplication so as to produce two derived equations whose
R.H.S. consists of zero only, or by the first or the second of the
methods utilised in the previous sub-section. Thus,

- dy4 9z.08y . A
X+ 3y~ 52— 3 B
9x+10y— 11z~ 4 C
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o o [96x-Bdy - 19022347 : _
(0 (20 4 Gx— 12y 20z =84f * 190x 96y — 1672 - 0
agx--12y— 202=12] | .
od 27x4+30y— 33z 12f o X7 IBYEDZ-0
yaving thus derived two cquations of this kind, je. of the
frtlﬁi"f':ir'l type, we can now follow the first method  under that
t:]';'f': and, after a lot of big mulliplications, subtractions,
H:jd[[iﬂﬂﬂ ﬂ]"ld di‘l"].ﬁiﬂIIEq WwWe Can Ghl:iiﬂ l_hﬂ' answer: -1"[:':'!, !.-'-;3
E_nd‘f_.::'#- .
(ii) or, adopting the first method adoptedin the last sub-seetion
me have:
» dy— Sz=3-Tx
and 10y—1lz=4—9x
. By cross-multiplication,

S _ Z20445+33-T7x _ 32x—13 )

J =17 iR
30-T70x—124-27x  43x— 18
B = =17 B j
128x—52 387x-—162
e v 2k M
S 3dx — 128x4-52-4-387x — 162 =476 ", 293x =586
Sx=2:y=3:and z=4
This method too involves a lot of clumsy labour.

(iif) or, adopting the Lopana-Sthapana method, we say:
C—A—Bgivesus lly—15z=-27
and 9B— 7C pives us—43y4-32z=— l}
S y=3z=4and x=2
(2) x+2y+3z=12 ... A
2x-+3ytdz=18 ... E}
4x+3y+5z=24 ... C
(i) . 24x-36y-+-48z=216) . g
13x+36y+54z=216} 7 65620, x~2=0
Similarly 43x4-3ﬁy+ﬁﬂ;=233} 5 24x—12y—122=0
2dx -+ 48y -1- 722 == 288 2x— y— z=0
S X=y=z=2
(if) 2, 2y4-3z-12—x; and 3y+4z=18—2x . ¥ =6—2x;
and z -x * x=y=z=2.
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(iif) 2A—B gives us: y+2z= E} . ¥=2
Z=32
2B—C gives us: 3y+3z=12) and :-:-:2}
or {';'.-} by mere observation.
(3) x-}2y+3z= 14 ... A}

—
e e —

2x+43y+4z=20 ... B
3x+ y46z=23 ... C

o 28x42y-562=2800 - 8x+- 2y— dz=0
20x-+40y+60z-280 | }
and 42x-+1dy-+-84z=322 [ -4 19x—32y-++15z=0

Hx+4ﬁy+fi'§'z==322_]
and 50 on as before.

(if) = 2y-+3z=14— x) - y=60- bx— 564-dx =4—2x

Jy-+4z= 20— Ex} 2=42—3x—404-4x =x-}-2

Co 3XH4—2X46x-H12=23 1 x= y=2andz=3

(iif) ZA—Bgivesus: y42z~ 8) -~ y=2
and 3A— Cgives us: Sy}-3z= I!;r} z=3}

x=1

2x43y+4z=~16 ... B

3x | Sy+-6z-25 ... C

(1) (16x4-32y+48z) — (22x-33y+-44z) = — 6x —y-+-dz =0

and (33x+55y+-66z) — (25x -+ 50y+752) = 8x +5¥y—9z=0 }
and so on.

L. d3Ax 1] =
(ii) .~ *3?;;_3:; 6 2:‘ and so on, as before.

(4) x-+2y+3z=11 ... A}

(i) x+ y+ z=5} 5 Y+z=4; and X+z=3
and X+-2y+2z=9 * x=1 y=2andz=2
In all these processes, there is an element, more or less, of
clumsiness and cumbrousness which renders them unfit to come
under and fit satisfactorily into the Vedic category. Methods
expounded in the Vedic Siitras and free from the said drawback

and also capable of universa] application will be explained ata
later stage.
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The Sitras needed ff::r the solution of simultancous quadratic

jpations have practically all been explained already. Only the
actual upp]icatinnal procedure, devices and modus operandi thores
of have to be explained. Thus,

(1) x+:-f=5} ﬂ“+21}'+y2=25} Lo (X—yPE= ]
&xy =6 dxy =24 . x—y =il
+ x=2) x=3
F=3}m}'=2}

This is readily obtainable by Filokanam (mere obscrvation)
and also because symmetrical values can always be reversed.

G 2 o= 1} i }::3}01‘ _2} Note the minus
and xy =06 y=2 -3
(3)5x— y=17) .\, 25%*—10xy+-y* -_-139} S (Sxy)=529
and xy= 12} and 20xy =240f .~ Sx+y=+4 23
: 10x=400r —6 ., x=4 o &
y=3]  —20
N.B.: (1) When the value of x or y has been found, Xy ﬂtjunce
gives us the value of the other. Thus, if, here, x=4, y=3, no

other substitution etc., 1S necessary. . i
(2) Onc sct of values can be found out by Vilokanam alone.

alues will
(3) The internal relationship between the two sets of values wi
be explained later.
Filokanan
(4) 4x— 3y = 7} + x=4 and y=3 by mere Vi A ion
2

and xy =1 -
(i) (4x — 3y): =49 . 4x+3y= 425 - 8x _32 or

-2
s :{:4} or ._.5?_}
}?JS i
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. - e 19
5 xﬂ_}r?= 197 .. x4 XyT¥ E .
( ],; —y =1 and x*—2xy-4-yi= |
x=3} e
y=2 -3 }
(ﬁ}x’+}”=5i} W :-:y+:-==-ﬁl} S Iy =—60 5 xy=
x+y= 1 Xi4-2dxy+yi= 1] » x=35 —4
or
y=—4 5}

N.B.: There is plus sign all through. Therefore it can all ba
simply reversed, i.e. one by Filokanam and the other by Teversal,

=4
& ;i_dy X2y -tdx = 24 } " (i) By Vilokanam, x=3 and y =]

Secondly x(x-y)+-4x —8x =24 x=3}

Y=l
(8) x+42y=35
and x24-3xy - 2yt ldx — y= Il}}
o (XEY) (x4-2y)fdx— vy = Sx LSy Ldx— ¥ =10
S Ox4dy =10
But x-2y= 5}

-« By Paravartya or by Siinyam An yat x=08& y=21
(9) x42y =35
and X4 3xy — 2y dx L3y =0
oo (RH2Y) (x4-y) = dy*4-dx 43y =0
S XY=y dx 3y =9x L8 y—4y*=(
S 4y*+10y—45-0 ', 8y10=4/570
& v‘Ez_{;— 10 _ 4:.:;;’2‘@

. x=15F/205
2

MEyi=(x4y) (3x—3y)+-4y
= [5;:-153:-]-#}?21-19

ve 13—15y— 15y+4y? =19

,*._4y‘3-—3[}y+55=={]

ik Ejf—-3l]-=;[:yf'4==:l;2 v 8y=32 or 28

(10) X+y= 5} .. 3
Jx?yi=19

y=4or 3}
(1) x243x—2y_4 and x=1 or 1}
-2y = .

o TRE—X—8 =0 cx==11 87
i Ak
2= 5x43y = } (X+1) (Tx—8) =0 y:*s}mlﬂfﬂ
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) sx— Sy—y=1., 25— l0y—yi=1
{Il.']*‘g‘i' e,]}_‘_ y?4-10y— 24 =0 S y=2)or —12

x=3f§ or +17
254 :,r='3 a I&K‘I‘Eif_‘}?a“ 3}.'. yi—2y4-1=0
{IE} 19.—]—1}‘-}":3 ﬁx'{_ '9}"—3}'3:] il 1|I'=1 and x=1

i) dx3+2xy = O
or (i1) t2xy=3 E s 3x—6x-+3=0 x=1

and y =1
5 dxy+2yt=T7 o 8-3y+2y =T
+y=2 : !
{Iﬂ};“'{'!l”-l-!ﬂ‘i“j}':? w2yt =3y+1=0 2 y=l} or i }
x=1 1%

tixy+ ¥yi= 8} . s »
Ol A bR
And by cross-multiplication
3dx? - 1Txy -+ 17y = 24x2— Bxy+32y*
= 10x24-23%y — 15y2=0 . 2x*+435xy— Iy* =0
- (x+3y) (x—y)=0 -, x=—3dyor &y
gubstituting in x*-4y* = 5, we have
gytfyt=30r Byl o, yi=toOr )
il :1:5@ or +£2
and -, x==134/1 or +3vF of 46 or 1.
N.B.: Test for the correct sign plus or i s,
(16) 2x2+ xy+y2=T71.% 184x2 92xy-+92y*= 154x2 423 1xy
oxit3my  =92f., 30x*— 130xy-+92y* =0
. (5x—4y) (6x—23y) =0 ;. x=gyor Ewl
. By substitution,

5'=:|:5'§ or 2EVE[T
x=44 BEVT
(17) 3x2—4xy+2y*= 1]... By subtraction, 4x2— dxy+y*=16
y¥-x? =—15[ -, ZxXx—y==%4
=By substitution, 4x*=F 16X +16—x*=— 13
+ 3x216x-+31=0 & so on
(18) 2x2 — 7% 2 .
y3yt= 0y, x=3yoriy
XXy }rﬂal:-:}_‘_, y==1 ut:hv;l"ﬂ
and x= 43
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2 dxy+2yt=11 .. x=zy.
S homn caiiet § SUF oai  IEVSRIN ..

S ¥Y=+%1
or 3y*4-4y*+2y*=1 ., y=+1],
and x =1
2y = | 2yE
(20) iﬂ_l_:r{: ;B : } X=4y or — 3y
. By substitution, 17y®=68 or 10y®=68
S y==2o0r £4/34/5
and x= 48 or +34/34/5
(21) X*—2xy+-y*=2x— 2y+3
X3y +2y% =2x — :v+3§
(i) By Sanyam Anyat ", y=0
Letx—y=a a*-2a—3=0_a=3o0r -1
s X—=y=3or —-1l.
Now, substitute and solve.
or (i) By subtraction, 3xy+y2=y
S y=0or3x+y=1
Substitute and solve.
N.B.: The Sianyam Anyat method is the best.
2) 3x°4-2xy—y*=0 7
E x=+sr==2x(y+2x;~} o Rmoyor gy
" Substitute and solve
or (ii) By transposition,
—3x%—2xy+y*=0
This means that the two equations are not independent; and

therefore, any value may be givento yand ga corresponding sct
of values will emerge for x|

“Harder” simultaneous

quadratics will be taken up at a later
stage.



ractorisation and Differential
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[n this chapter the relevant Sitras (Gunake-Samuccaya etc.)
dealing With successive differentiations, covering Lgibniz’;
theorem, Maclaurin’s theorem, Taylor’s theorem ete., and given
q lot of other material which is yet to be studied and decided on
by the great mathematicians of the present-day western world, is
also given.

Wwithout going into the more abstruse details connected here-
with, we shall, for the time-being, contend ourselves with a very
brief sketch of the general and basic principles involved and a
few pertinent sample-specimens by way of illustration.

The basic principle is, of course, elucidated by the very nomen-
clature, i.e. the Gunaka-Samuccaya which postulates that, if and
when a quadratic expression is the product of the binomials
(x+a) and (x-b), its first differential is th= sum of the said two
factors and so on as already explained in the chapter on quadratic

equations.
It need hardly be pointed out that the well-known rule of

differentiation of a product, i.c. tI&at if y=uv, when u and v be
g dy du v
e functions of x, e +1u 35 0 the Guna

ccapa Sitras denote, connote and imply the same mathematical

truth.

Let us start with very simple instances:
(1) x24-3x-L2 = a:} hz)

Xr2=(x+1) (X+

= D, (the first differential) =2x+3=(X +2)+(x
(2) x346x21 11 g bZ}{ ESJ

S Ox - Lx 46 =(x+-1) (X+ X+

éy le312+123+f11 ugxg+3x+2}+{}*+5"+ﬁ:'

4 (x?+-4x L 3) = ab+-bc--ac=Zab-

+1)=2a
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+ Dy=6x+412=2(3x+6)=2 [(x+1)+(x-+2) 4 (x3y)
=2(a+b+4c)=2Za=[2 Za
(3) x4+ 10x3+35x2--50x +24 = (x4 1) (x4-2) (x+3) (x +-4)
D, =4x3--30x2-70x 50 = Zabe
D, = 12x24-60% 70 = 2Zab =2 Zab.
Dy, =24x-+-60 =6(4x-4-10) -=|iEa

(4) x5+ 15x*4-85x34-225%* - 274x 120
=(x+1) (x+2) (x-+3) (x+4) (x+5)
. Dy = 544 60x3-+255%2+450x+274 ~ Sabed
. Dy — 205"+ 180x2+ 510x+450 = |2 Zabe
"o Dy =60x?+-360x+4-510=|3_Zab
" Dy=120x+360 =24 (5x+15)=|4 Za

(3) 1+ 19x3116x°+ 284x 240 = (x+2) (x+3) (x+4) (x+10)
S Dy =4x34-5Tx21232x 4-284 —Fabc
"+ Dy=12x24-114x4-232= 2 Zab
S Dy=24x+4114 =6(4x+19)=[3 Za

These examples will suffice to show the internal relationship
subsisting between the factors of a polynomial and the successive
differentials of that polynomial; and to show how easily, on
knowing the former, we can derive the latter and viee versa.

There is another relationship too in another direction wherein
factorisation and differentiation are closely connected with each
other and wherein this relationship is of immense practical help
to us in our mathematical work. And thisis with regard to the
use of successive differentials for the detection of repeated
factors.

The procedure hereof is so simple that it needs no elaborate
exposition at all. The following examples will serve to show the
modus eperandi in question

(1) Factorise x3— 4x2-{-5x—2

5Dy =30 8x 5= (x—1) (3x—5)
.Tuclg::ng from the first and the last coefficients of E the given ex
Pression, we can rule ot (3x—35) and keep our eyes on (x—1)-

. D, =6x = 8§=2(3x—4) -, we have (x— 1)?

o Acmrc[mg to the Adyam Adyena Siitra E — (x—1)? (x=2)
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ctorise 47— 12x°—12%—d

{:}PHD _=]21’3—2"}{'—']5=3(‘h{“=—31__5]_ 3

.n 1 i {2};-—

Py 2= 24=24(x=1) . As before, we ARACR)
V. E=(2x+1) (x—4) Lecat,

3) Factorisc 24— 6x34- 13x% — 24x-1-36

O Dy = dx3— 18X* 426X~ 24 22— 932 4. 13, _ 5

~2(x—3) (2x*— 3x+4) )

. D,=12x*—36x--26 (which has no rationa]

A al f:

L E=(x— 3P &) etors)

ctorise: 2x4— 23x3--84x?— 80x — 64

{# Fa
+ D, =8x%— 69x*+168x— 80

+, Dy=24x*— 138X+ 168 = 6(4x® — 23x-1-28) = 6{x —
- Dy=48x— 138 =6(8x— 23::: ERR A
» Dy=6(x—4) (4x—-17)
5 Dy=(x—4)* (3x—2)
& E=(x—4) (2x41)
(5) Resolve x*— 5x®— 9x*+-81x— 108 into factors.
s Dy =4dx3— 15x%— 18x 481
+ D= 12x2— 30X — 18 = 6(2x*— 5x— 3) = 6(x— 3) (2x-+1)
= Dy=24x— 30 =6(4x —5)
D3=(R“3] {iz}i‘]‘ﬁj
» Dy =(x—3)* (4x+9)
5 E=(x—3) (x+4)
(6) Resolve 16x4— 24x2+16x— 3 into factors.
. D, = 64x3— 48x+16 = 16(4x3— 3x-+1)
. D, = 192x2 — 48 = 48(4x2— 1) =48(2x— 1) (2x+1)
- Dy =384x
S Dy=(2x—1) (96x-1-48)
S Dy=(2x—1)% (x+1)
s E=(2x— 1) (2x4-3)
(7) Resolve x5— Sx4-1 10x*— 10x2-}-5x— 1 into factors:
»\ Dy = 5x8—20x34-30x2— 20x+5
=5(x* — 4x34-6x2—4x-+1)
' Dy=20x3— 60x2+60x— 20 =20(x*~
& Dy=3x2— 6x+4-3 =3(x2— 2x+1)
Y Dy=6x—6=6(x—1)

3x2-+3x—1)
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- Dy=3(x— Iy*

- Dy=4(x— Iy?

+ D,=5x-1*

s E=(x—1)°
(8) Factorise X°— 15x3-4-10x2+4-60x — 72

= D, =5xt—45x" +20x+4-60 =5(x* — 9x*+4x — 12

s D, =20x*—90x+20= 10(2x3—9x+-2)

*, Dy=60x2—90=30 (2x*—3)

> D=120x

+ Dg=20(x—2)? (x+1)

5 Dy =5(x—2)% (x-+1) (x+3)

s B=(x—2)} (x+3)

Many other such applications are obtainable from the Ve

Siitras relating to swa-Fwra (Calana-Kalana)—Differential (4
culus. They are, however, to be dealt with, later on.
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partial Fractions

P

Another subject of very great importance in various mathemati-
cal operations in general and in Integral Calculus in particular i8
«partial Fractions” for which the current systems have a very
cumbrous procedure but which the ‘Pardvartya’ Sitra tackles
very quickly with its well-known mental one-line answer process.

We shall first explain the current method; and, along-side of
it, we shall demonstrate the “Pargvartya” Sitra application
thereto. Suppose we have to express 312+ the

(x+1) (x+2) (x+3)

shape of partial fractions.

The current method is as follows:

3x2412x+4-11 A B  C
Let, D I~ AF a2 T aes
. 3x’+12§;|-1 1
&+ (x+2) (x+3)
A(x'+5x+6)+B(x‘+4x+3)+C(x’+3x+2)
- x+1) x+2) gx+3) '6A -
. x{(A+B+C)+x(5SA+4B+3C)+(6A+ -(Eax’-)l-12x+ll)
~. Equating the coefficients of like powers on both sides,
A+ B+ C= 3]

5A+4B+3C= 12JL
6A+3B+2C=11

~. Solving these three simultaneous equations involving
three unknowns, we have, A=1; B=1;and C=1
1 1 1
SEB= —=t 5+
x+1 " x+2 " x+3
In the Vedic system, however, for getting the value of A,
(i) we equate its denominator to zero and thus get the Para-

vartya value of x (i.e. —1);
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#i) and we mentally substitute this value —1in the g, py, N
out the factor which is A’s denominator on the R.H S, o ith,
(ili) we put this result down as the valus of A, “‘rlmllaﬂf i
and C. .
Ixt+12x4-11 —12-51]
== = I !
This, A= GI2(+I) o =1

LI 1224410 -1

B (x=3) {x+1} me=n =1
IH12x+11 27-364-11 2
d —r e S0
= s GFD I (—2)(=1) 2 !
. B 1 L il

Xkl " X422 X3
Note: All this work can be done menrally; and all the labor-
ous work of deriving and solving three simultancous cquations
is totally avoided by this method.
A few more illustrations are shown below:
2x-1-3 1 1 (also available by mere
(1) — T e it e :
(%--1) (x--2) =1 " x-52 Vilokanam)
7 7 7
2 i — —
( ]{x—i-l} (x+2) x--1 x-2
2x—35 S
@) (x—=2)(x—3) x-2
Ix--13 10
4 =
( }{x-H] (x+2) x41 x--2
2x-+1 -3
O g5~ x=2
Tx—~1 -5 4
© I—5x-F6x* 1—2x ' 1—3x

—
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cpan=3xY (LX) (3- Jx)
AN ET =T
{ €. 3x 1 - 4
e !-T:'_r “x—1 X1
s—18 3. 2
Dg-+12 -3 x—4
it-10x—4 o 8x—28 3.0 2
()T K= (=4 Ty o
x4-x+-2 L9 ISR
() FFec 1506 27D~ %92 wmT
2541 3 5 . 7
B S=eeT1x=6 = 26~ =21 3537
20— x4 12x4-1 x*—10x--13

(16) ;a_ﬁ:ﬂ_[_llx—f ) 3[1~ 1) (x—2) (x— 3
4
T Ty
Therefore, the general formula is:
Ix*4-mx-+n
(x—a)(x—b) (x—c)

; la*4+-ma4n _ Ib*4-mb4-n lc2--me-n
e (a—b) (a—c¢) B “(b=c) (b—a)’ .G = (c—a) (c—b)

If and when, however, we find one or more factors of the
dznominator in repetition, i.c. a square, a cube ctc., a slight varia-
tion of procedure is obviously indicated. For cxample, let E be

3x4-5
(1-2x)*

According to the current system, we siay.

-
I..etl-=2x-1p( so that x = T)

3-3p
o I ) _i-i [3-—3P
p? P
A3 3 a5 o
2pt 2p  Hl-2Zxp  2(1—2x) yre. But even this

This is no doubt a straight and simple procedur N
1% rather cumbrous, certainly not easy and r_--:rE:nnl} nur:“mh;“
arithmetic! And, with bigper numbers and I_up,h.rr l_l.u
will be the case in the next example, it will be still worse.
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The Vedic system, however, gives us two very

methods whereby the whole work can be dope ;?{;ﬁ *;F-:Iu -
and speedily. They are as follows: 'Rl
W 3x4-5 7 W
@ {1—2:{}*= (T—2xp " T—-2x

S A5 ==ALB(I=-29) ... .. M

= —2Bx=3;and A-+-B=35
S B=—1%and A=6}
(i) 3x+5=A+B(1-2x) ... ... M
. By Pardvartya (making 1 —2x =0, i.e. x =1),
we have A =6%; and as this is an absolute identity, i.c. i,
for all values of x, let us put x=0
oo A4-Bw=5 2, B=—1}
Two more examples are taken by way of illustration:
x?4-3x+4-1
D=
According to the current system, we say:
let 1—x=p (so that x=1-—p)

. B o =PPA3—p) ]
X -

P
1—-3p-+3p*—p*-+3=-3p+1
= =
_5_6.3 1
p* P Pt p
5 & ... 3 1

(=0T J-x TU=%F T (I-%
But according to the Vedic procedure, we say:

() A4+B (1 =x)+C(1 =x)+D(l —xpP =571 3x -1
. (A+B+C+D)+x(— B-2C~3D)4-x¥C+3D) - Dx?
L = x34-3x+1

S D=-1
- C+3D=C-3=0 5 C= 3}
& =B-2C-3D=-B-6+4+3=3 + B=—¢
5 A+BHCHD=A—6+43-1=1 . A= 5

or, secondly, by Paravartya, *

Put x=1 Jo A= 5
Put x=0:, A4B+C4+D= 1 .. B=-—6
Putx=2 AHH%—C-—D-:H} s, C= 3

s D=—1
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ch can be done by mental Arithmetic.

ﬂﬂﬂfwm
L et A . B
) W (x+1)* x--1 x—1
; Mx-IJ-I—'ﬂ(EE'— D-+Cx+1)* A FB=-C=—35
i 5(-A-4B+C)+x(A+ECJ+xﬂ[B+E}} A+2C = l
~5+2x—2x° B+B =-2

s A=—%B=-3};and C=1}
or, sccondly by Paravartya,
Putx= 1 ., 4C=3 C= 1}
x==1 02 —2A=1 " A=— ;«}
x= 0 S B=-31
N.B.: (1) It need be hardly pointed out that the current method
will involve an unquestionably cumbrous and clumsy process of
working, with all the attendant waste of time, energy etc.
(2) Other details of applications of Paravartya and other Sitras
to partial fractions, will be dealt with later.
(3) Just now we take up an important part of Integral Calculus
wherein, with -the help of partial fractions, we can easily perform
difficult integrational work.



By PARTIAL FRACTIONS

In this chapter we shall deal, briefly, with the question of inte-
gration by means of partial fractions. But, before we take it up,
it will not be out of place forusto giveaskeleton-sort of summary
of the first principles and process of integration as dealt with by
the Ekadhika Siitra.

The original process of differentiation is, as is well known, a
process in which we say:

Let y=X* Then Dl(l.r.u g—:~ ) =%

D,=6x; and D;=6
Now, in the converse process, we have:

d:!lr 2 =
Te 3x2 -, dy=3x%dx

Integrating, -, [dy=J3x%dx . y=Xx?

Thus, in order to find the integral of a power of x, we add
unity to Ihe'ﬁ" (Piirva), . the original index and di'u:ide the co-
efficient by the new index, i.e. the original one plus unity.

A few specimen examples may be taken:

(1) Integrate 28x3. [28x%dx = A7kt = Txd

(2) S (xt+3x3+6x3+Tx —9)dx .

= 35 At 25343 0x - 9x +K where K 1s an
term.

(3) J(xa4-x2-1-4-x3-* etc.)

‘H_HH"- xi - 12-—-[
a--1 a | oa-— 1

(4) J(axm+i-f-bxm-{cxm=1)dx.

independent

.|.-+El-c-l
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Mm.l-ﬂ: h.:i:m+‘- Cxm

M1z mtl | om ;
This is simple enough, as far as it goes. But what aboy: i

plex expressions involving numerators and denominatorgg
following sample specimens will make the procedure by Meng

of partial fractions clear:

- « &1C.

Ak Tx—1
(1) Integrate —e—omy

. = Tx—1
" By Paravartya, e - — —
ex*—5x+1 (2x—=1)(3x-1)
5 4
T . |
o [(7x—1)dx 5 dx 4 !L____'dx
F Im* Ix—1 In—1
L [d(2x) . {d(3x)
“%Sz'x'—l s L-I-I
=§log (2x—1)—4 log (3x—1)
il fh—nﬁ_ﬂ]
—O8 Bx—1)'P
xt—Tx+1
(2) Integrate P — G 11x—6
) x2—Tx+1 xf—Tx+1
By Paravartya, Y 1Ix—8 x—1)(x—2)(x=3)
—5 9 11

oD a2 Ix_3)

[ (x2=Tx+41)dx -3 " g ... U ].d]'.
*tIx—6x*+11x—6 i{ﬂ{x— 1) " x-2 2{(x-3)
e A dx 11 [ dx
=1 KFI'i_ ? sz =3 Ix—i
==§log (x—1)+9 log (x—2) 22 log (x—3)
(3) Integrate = 1

oy x]
1 A B C
Let T s ';—l-—f' x— l]n+ x+1 ko
o T=A(x= 1) (X 1)+B(x41)4-C(x— 1)°
= A= 1)+Ba+1)+Cx— 1. ... .. N
Now, letx=1 * 1=2B S, B=1
Differentiating (N),

U=2Ax-++B+2Cx—-2C.....P
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Nowputx=1.. 2A=—-3 " A=—1

pifferentiating (P), 2A4-2C=0 -, 2C=1 , C=

= 1 1
: +

=

» BT =) T -1 A(x+1)
dx

dx 3. oo __E__ s dx
:femmm= e H et H o5
- ~1 log (x= 1)~} — +}log (x+1)
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It is a matter of historical interest to note that, in their mathe.
maucﬂ.]. writings, the ancient Sanskrit writers do not use figures
when big numbers are concerned in their numerical notations
but prefer to use the letters of the Sanskrit Devanagari alphabet
to represent the various numbers! And this they do, not in order
to conceal knowledge but in order to facilitate the recording of
their arguments, and the derivation conclusions ete. The more so,
because, in order, to help the pupil to memorise the material
studied and assimilated they made it a general rule of practice to
write even the most technieal and abstruse text-books in Siitras
or in Verse which is so much easier—even for the children—to
memorise than in prose which is so much harder to get by heart
and remember. And this is why we find not only theological,
philosophical, medical, astronomical and other such treatises but
even huge dictionaries in Sanskrit Verse! S_u, ﬁDFI this ﬂﬁd-
point, they used verse, Siitras and codes f_‘ar li ghtening the b:;t hin-
and facilitating the work by ".rcrsifyilng lﬁenllﬁfc and even m
matical material in a readily assimilable form:

The very fact that the alphabetical code as 1'1551:1 by them ti-?-f

: Ty d can be immediately n
this purpose is in the natural order an

d to not
preted, is clear proof that the code language Was resorte oo
for concealment but for greater ease

in verification elc., b
em i s simplest forms “FRE T, '
key has also been given n1 plest .
Tifx ==, ATSEF and &; 74 which means:
(1) ka and the following eight lctters.;
(2) fa and the following eight letters ;
(3) pa and the following four leiterﬁ,. ui
(4) ya and the following seven letters;
(3) kga (or Ksudra) for Zero-
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E!ahz;ﬂfﬁ;jﬁr:n?if;jl denote 1;
{EI} H.-l ;n'jm pha and ra all represent 2;
e d Ja all stand for 3;
(3) ga, da, ba an e
(4) gha, dha, bha and vz all deno ; f;
(5) gna, na, ma and sa all IEPI‘ES:EH ;
(6) ca, ta, and sa all stand for 6;
(7) cha, tha, and sa all denote 7;
(8) ja, da and fa all represent 2;
(9) jha and dha stand for 9; and
(10) Ksa (or Ksudra) means Zero!
The vowels not being included in the list make no differeng,.
and in conjunct consonants, the last consonant is alone to h;
counted.
Thus pa pa is 11, mamais 55, fa fais 11, ma rais 52 and 5,
on!
And it was left to the author to select the particular consonant
or vowel which he would prefer at each step. And, generally, the
poet availed himself of this Iatitude to so frame his selections as
to bring about another additional meaning or meanings of his
own choice. Thus, for instance, kapa, fapa, papa and yapa all
mean 11; and the writer can by a proper selection of consonants
and vowels import another meaning also into the same verse.
Thus “I want mama and papa” will mean I want 55 and 11"
Concrete, interesting and edifying illustrations will be given
later on especially in connection with recurring decimals, Trigono-
metry efc. wherein, over and above the mathematical matter o
hand, we find historical allusions, political reflections, devotiondl
hymns in praise of the Lord Shri Krishna, the Lord Shri Shan-
kara and 5o on!¥

This device is thus not merely a potent aid to versification for

facilitating memorisation but has also a humorous side toit which
adds to the fun of jt!

—

*Thﬂ' I‘l}"mu iﬂ

" 2
: praise of the L : of w 10 3
decimal places i ord gives us the value

n Tﬁgﬂﬂum&r}r_
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it has become & sort of fashionable sign of cultural advancement
for people now-a-days to talk not only grandly but also grandio-
«ely and grandiloquently about decimal coinage, decimal wei ghts,
d:.{_:[mﬂl measurements etc.; but there can be no denying or dis-
guising of the fact that the western world as such—not excluding
its mathematicians, physicists and other expert scientists—seems
to have a tendency to theorise on the one hand on the superiority
of the decimal notation and to fight shy, on the other, in actual
practice—of decimals and positively prefer the “vulgar fractions”
ta them!

In fact, this deplorable state of affairs has reached such a pass
that the mathematics syllabus—curricula in the schools, colleges
and universities have been persistently “progressing” and
“advancing” in this wrong direction to th: extent of daclaring
that recurring decimals are not integral parts of the matriculation
course in mathematics and actually instructing the pupils to con-
vert all recurring decimals at sight into their equivalent vulgar
fraction shape, complete the whole work with them and finally
Te-convert the fraction result back into its decimal shape!

Having invented the zero mark and the decimal notation and
iven them to the world as described already from the pﬂgﬂs_ﬂf
P mi-:. Halstead and other Historians of !ﬁ.a[a.thammtic:'sT the Iﬂd‘:ﬂ-ﬂ
Vedic system has, however, been advocating the decimal systen,
Eg:lﬂ‘an_}r a priori grounds or because of p{tﬂinli_tT Ef'm- f"_“]'"'lliliz

ninsic merits. Its unique achievements in this uﬁtrr.:a.:tu::nI -1IIF
: rE’;;E'n most thrillingly wonderful r:hftr{tctcr; :‘md?*gfiﬂun:zj
Elven : Fat e very commencement of this 1Ila.|s.tm!cw:iuluml 8
dohy) ew startling sample-specimens thereof. The 5 e
“*5 Temember that, at the end of that chapter, we pro
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to go into fuller details of this subject at a later stape,
ment of [that promise, We NOW pass on 1o a further oy,
the ma‘-pﬁ'g gfved:_ﬂ ﬂlﬂthﬂmal]ﬁ in this dIﬂ:‘:tlﬂh

1 Tug
5![]'1]]1 o

PRELIMINARY NOTE

We may begin this part with a brief reference tq the
known distinction between non-recurning decimals, rr.:r.:unjn.
ones and partly-recurring ones. B

(1) A denominator containing only 2 or 5 as factors gives i
ordinary, i.e. non-recurring or non-circulating decimal Fractiog
each 2, 5 ar 10 contributing one significant digit to the decimy
For instance,

1 1
== b — me— . =W, ' = -—_=.I_1 ;
$=3i4 2% 2 2% 2w2%2 >
1 , |
M. - sl m = = 03125:
W= Ianaxd - Wisr =5

1
P25y =1, 5 =-05; v¥= i 04;

1 g
fﬁ“:uxzf'mj"i“_ IUxﬁ_'ﬂz‘
1

‘3'11']'=iu—}-é—nﬁ = .ﬂlzj; T%E'= ’i"{]:-'-a - -ﬂl; and 50 on.

(#{) Denominators containing only 3, 7, 11 or higher prime
numbers as factors and not even a single 2 or 5 give us recurring
or circulating decimals which we shall deal with in detail in ths
chapter and in some other later chapters too.

§=.3; $=.i42857; $=.i; & =.09;

P5=076923; % =.05882352/9411764%;

¢ =052631578/947368421 ; and so0 on.

(iii) A denominator with factors partly of the former type i
2 and 5 and partly of the latter type,ie.3,7, 9 etc. gives 15 ?
mixed, i.e. partly recurring and partly non-recurringdecimal ¢
2, 5or m]mnlrihuting one non-recurring digit to the decimal

1

= w3 6= 3x5 06;
|
= I 1
_h__=‘i"ﬂ-;_ — — -
e B VT 1 MR 771l 0456;

1
“‘1'=m= 0416 ; and so on.
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() Lach 3 q:‘l'l' O contributes only o TECUTTing o, 201
S af themy T BIVES 6; and other number b Shit;
:“-L:u_*.:-hmt contribution t!:::t:ul:-'. u.I” which will be explained
:‘:*.m‘_b]-*m ety pon-recurring decimal willy the ﬂimdnrdmn].i
{.'.'

Lil‘ﬂ'i“ be observed that the st digit of t]

*"'E':'c_;wj the last digit of the equivalent deeimal
r-::tfh:m will always j,.ri::ld i _Iﬂ-i'ﬁll'ﬁlﬁl ending in ZET0: 1,7"-”_1
@ L"I o every TeCUrTing decimal with the standarg numeralor
_"“"L ¢ will be similarly obscrved that 9 will invariably be the
TI.:;‘. feit of the product of the 1:."151 digit of the denominator and
: lL:' digit of its recurring decimal equivalent nay, the product
;:_;;tunlijr‘ a1 continuous series of nines!

11
make their 0w

Her,

meri.
1 denomi.
multiplied

Taus, 1=.3; =2 v =-13 }=.25;}=-125;
J-=.0625; 7 =04; 735 = 008; etc.

And 3=.3;3=.i42851; =151 =09;
Tl_a" = 15‘?6913; ﬂtll:"

And this enables us to determine beforehand, the last digit of
tha recurring decimal equivalent of a given vulgar fraction. Th1:|s
3-inits decimal shape must necessarily end in 7; {51 1; ‘-._}1— in
9;-L in 3; and so on. The immense practical utility of this rule
in the conversion of vulgar fractions into their decimal ahapui: has
already been indicated in the first chapter and will be expatiated
on, further ahead in this chapter and in subsequent chapters.
Let us first take the case of 2 and its conversion 7)1.0(.142837
tomthe vulgar fraction to the decimal shape.
We note here: 30

(i) that the successive remainders are 3, IR
2,6,4,5and | and that,” inasmuch as 1 is the —_
original figure with which we started, the same 2]3

'mzinders are bound to repeat themselves in

“?Hamﬂ sequence endlessly. And this is where 60
::: ﬂu_p the division-process and put the usual 56
L::: f;ll'lg marks the dots on the first and the 10
E_a ;E“Sm order to show that the decimal 35
e “BUn its characteristic recurring chara- _—-jg
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At this point, we may note that inasmuch as the firg diy !
dend 10 when divided by 7 gives us the first remainder 3, ilrm‘
with a zero aflixed to it, this 3 will as 30 become our g

; : et L ony
dividend and inasmuch as this process will be continuing jng, *
nitely (until a remai nder repea

ts itself and warnsus that the Fecys

ring decimal’s recurring character has bﬁglfﬂ to m:a.r.ni&:st its..:][:;
it stands to reason that there should be a 1:11‘![5:11‘“1 ratio in acyyy
action. In other words, because the first dividend 10 gives us g
first remainder 3 and the second dividend 30, therefore ;{nm}
yep, i.e. according to the ratio in qﬂﬂﬂﬁﬂﬁ or by simple rule of
three, this second dividend 3 should give us the second remaingy;
91 In fact, it is a “Geometrical Progression " that we are dealin
with!

And when we begin testing the successive remainders from this
standpoint, we note that the said inference about the,Geometrica]
Progression with the common ratio 1:3 is correct. For, although,
when we look for 33 3—=9 as the second remainder, we actually
find 2 there instead, yet as 9 is greater than 7 the divisor, itis but
proper that, by further division of 9 by 7, we get 2 as the remain-
der. And then we observe that this second remainder 2 yields us
the third remainder 6, and thereby keeps up the Geometrical
Progression with the same ratio 1:3. In the same way, this &
gives us 18 which being greater than the divisor and beingdivided
by it gives us 4 as the fourth remainder. And 4 gives us 12 which
after division by 7 gives us 5 as the fifth remainder! And, by the
same ratio, this 5 gives us 15 which when divided by 7 gives us |
as the sixth remainder. And as this was the dividend which W
began with, we stop the division-process here!

The fun of the Geometrical Progression is no doubt there; but

it is not for the mere fun of it, but also 7LOG.P. 1,3, 2.6 4,3

for the practical utility of it, that we 7
have called the student’s attention to
it. For, in the actual result, it means
that, once we know the ratio between the first dividend an
first remainder 1:3 in the present case, we can—without 4
further division—automatically put down all the remainde” l?f:
maintaining the 1:3 Geometrical Progression. For examP a 1:c
the present case, since the ratio js uniformly 1:3, therefo™®

d the
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S t o
2; and so o untl we reach 1. Thlgas J::: dl]“mr‘ We set
I E'"_.L

Tt
faugwﬁ . Teads as

1, 3, 2, 6, 4:15— 1

_but what do we gain by knowing { .
h;f iﬁthﬂut actual division? The ans.uir ?f&if‘i“fj”‘ welon
get the first remainder, our whole work is practic ally ;1 astc
=nee cach remainder with a zero affixed automatically b:i:-l:r or,
(e next dividend, we can mentally do this affixing ar sfn}ef
mentally work out the division at each step and put down gﬂ[l;
quotient automatically without worrying about the remainder!
For, the remainder is already there in front of us!

Thus the remainders 1,3,2,6,4and 5 give us Dividend-digits
the successive dividends 10, 30, 20, 60,40 and 1,3, 2, 6, 4,5
50: and, dividing these mentally, by 7, wecan 14 2 § 5 7
go forward or backward and obtain all the Quotient-digits
guotient-digits 1,4, 2, 8, 5, and 7. And, as it
is a pure circulating decimal, our answer is 142857

There is, however, a still more wonderful Vedic method by
which, without doing even this little division-work, we can put
down the quotient-digits automatically forward or backward,
from any point whatsoever! The relevant Shrra hereon says:
AU 7 AT (Sesanyankena Caramend) and means: The re-
mainders by the last digit.

As explained in another context in the very first chapter of this
volume, the word by indicates that the operation is not one of
addition or of subtraction but of division and of multiplication!

The division-process whereby we affix a zero to 1, 3, 2 etc.,
divide the product by 7 and set down the quotient has E:Eﬂ_n
Eh‘{"m just above. We now show the reverse process of multipli-
Cation, which is still easier. !

In'so doing, we put down not the dividend—nucleus digits but
thlﬁmaindm themselves in order: 3,264,351 fast
digi,_n i A we know from a previous pi_Ll-“ﬂEl‘ﬂPh ﬂ;“;f;‘:: e
Iﬁst.’i:tfm}mly the above EI}'?H el b}'h; the remain-
ders lﬁ;allﬁ f‘lght-_hand-m{}st digit down under ac O oo
gk Y ignoring the other digit or digits, if’ any, of ceally

* And lot the answer is there in front of us agaim




Vedie M athematics

204 |
athematics! Thug,

{REmEimjm]
3’ 21‘ ﬁ’ 4'|. 3 1
Tmﬁs‘"&-
(Quotient-gigiy,

; B
Jooking more like magic than like

3 multiplied by 7 gives us 21;

and we put down only 1;

237 gives us 14; and we put down only 4;

63 7 gives us 42; and we put down only 2;

437 gives us 28; and we put down only 8;
53 7 gives us 35; and we put down only s
137 gives us 7; and we pul dufvn 7.

And the answer is .i42837

At this point, we may remind the student of a very important
e have already explained in 7)1.0 (.142

and

point which w .
Chapter One regarding the convession of T B57
sk L and -A to their recurring decimal 30
shape. This is in connection with the facts 28

that the two halves of these decimals to- ——
gether total a series of nines; that, once o
half the answer is known, the other half can 14
be had by putting down the complements _?EE
from nine of the digits already obtained : 56
and that, as the ending of the first half of T
the result synchronises with our reaching of 9

the difference between the numerator and ¥

—

th - :
w ;E:c:;arz:? ator as the remainder, we know 50
! exactly we should stop the division or 49
multiplication, as the case ma
t}_ltlmechanical subtraction
dl;;is already found|
h : i
aPPIiE;I:;d:: Lcan casily realise how. inasmuch as this rule ¥
it therefore rn:._]r:ﬂﬂt Wherein DN Comes up as a remainde’
: an - " i
labour Involved, by E:xac;‘;'tzﬁzﬂzlf?ductmu of even the I

— —

¥ be and begin I
from 9 of the
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Gm'"g back to :thr_.'- ﬂl:fgil'l-'ﬂ tﬂpi? re: the conversion of "ﬂﬂgnr
factions into tht:_lr ::quwﬂlr._:nt ﬂEEIm.ﬂl shape and how the peo-
mclric:ﬂ ngresmuna.l r:s.tm. can give us beforehand—without
actual di".-'isiﬂ'ﬂ-—'ﬂl[ the n:m:lundﬂrs that u.::ll come up in actual
division, We now take up 5 as E.I'I-Dthtl'. illustrative example and
observe how the process works out therein:

o OFe Here the successive Dividends— 13)1.00 (.076

qucleus—digits are 1, 10, 9, 12, 3 and 91 (923
4. Affixing a zero to each of them op 999
and dividing the dividends by 13, we 78
get 0.7, 6, 9, 2 and 3 as the first i‘%g
digits of the quotient 1n the answer. —5%
26
4D
39
g 1

(if) Or, secondly, re-arranging 1H1.00(G.P. 1, 10,9, 12,3, 4
the remainders so as to 0 76 923
start from the first actual remainder, we have:

10,9, 12,3, 4and 1. And multiplying these by 3 the last
digit of the answer in the pra:isant 13)1.00(10, 9, 12, 3,4, 1
case we put down merely the right- 07 G 923
hand-most digit of each product;

and these are the successive quotient-digits! Here too, as
usual, we go forward or backward or in any sequence which
we may choose. And the answer is 76923

(iif) And here too we observe, in operation, the rule about
complements from nine! And it commences from the 076
point at which we obtain 12 the difference between the 923
numerator and the denominator as the remainder. T 999

(iv) lrl_thv: above charts, we may avoid big numbers by using a
:HEM where a big number is threatened. Thus, instead of
aking 3 as in the case of 7, we -

% - 27
may take—3 as the common GP: Lg% 1% O
geometrical ratio and will find the geometrical progression
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BTy I
intact; and nzllur:[IJy Ihﬂ. pj;:r ;;”g. -1z a0 i 5|
duct of cach remainder-digit by I 5 2
the last digit remains intact too i

and gives us the same answer: 0769241

We pass now on to still another and easier method whigy
comes under the Ekadhika Sitra which we have eXpounde “
explained at sufficient length already in the first chaptey

s ang
which therefore we need only summarise and supplement hiers
but need not elaborate again.

The Ekdadhika Siitra which means ‘by the preceding ope i

creased by one’ has already been shown at work in'a  number of
ways and in a number of directions and on a number of oCCasiong
and will similarly come into operation still further, in many
more ways and in many more contexts.

NUMBERS ENDING 1N NINE

(i) Il and when the last digit of the denominator is 9, we know
beforehand that the equivalent recurring decimal ends in 1.

(ii) In the case of 1&;, the last but one digitis 1: we increase it
by I and make it 2. In 3% we work with 211 =3, In 4% and in
¥ We operate with 4 and 5 respectively and so on,

(i) In the muIliplicatiun-pmccﬁs by Ekadhita Piirvg, 1n all
these cases, we put 1 down as the Jast digit, i.e. in the right-hand-
most place; and we go on multiplying that Iast digit 1 from the
right towards the left by 2, 3, 4 ang 5 respectively: and when
there is more than one digit in that product, we set the last of
those digits down there and carry the rest of jt over to the next
immediately preceding digit towards the left

(iv) When we get DAMN as the Product, we know we have done
half the work: we stop the multiplicatjon there: and mechanjcally
put down the remaining half of thp answer 'h 1 king
down the complements from nine., i

(v) The division-process by Ekddhita s

!
rules vide supra. “ira Tollows the same

(1) We may first consider the fraction 2, : ,
tion of the method described : HOTR our first - jlustra-

(i) Putting I as the last digit and continug]] g L

towards the Tefl, we get the last four dipjrs Imvir?ll:u?;mymg h?' rE
out the Jeast dilficulty. 'O 1A with:
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. v+ . 94736842
1 11

8K 2= 16. Therefore put 6 down inlmcdintcly to the left of
g with 1 to carry qQver. 6 2-+the 1 carried over =13, Put the 3 to
he left of the 6 with 1 to carry over. 3x241=7. Set it down
pefore the 3 with nntlm:ug to carry over, 7% 214, Therefore
put the 4 before the 7 with 1to carry over. 4324-the 1 carried
over =9.

(iit) We have thus got 9 digits by continual multiplication from
the right towards the left. And now 9 2—18 (which is D~N).
This means that half the work is over and that the carlier 9 digits
are obtainable by putting down the complements from nine of
the digits already determined. So, we have
1%—-().&525315?3,.’94?36342 i

(2) Let us now examine the case of %

Begin with 1 as usual at the extreme right end and go on multi-
plynig by 3 each time, “carrying over” the surplus digit or digits
if any to the left, i.e. to be added to the next product to be deter-
mined. Thus, when we have obtained 14 digits, i.e.

.« «96535317241379131,

we find that we have reached 28; we know we have done half the
work; and we get the first 14 digits by simply subtracting each of
the above digits from nine.

03448275862068]
SA=003448275862068/9655172413793

(3) Next let us take 5%

Take 1 again at the extreme right end and continually multiply
by 4 from the right to the left. Thus, we have:

5= .025641.

Note in this case that - 39 is a multiple of 3 and 13 and not a
prime number like 19 and 29 and =" 3 and 13 give only 1 and 6
recurring decimals, there is a difference in its behaviour, i.e.that
the two halves are not complementary with regard to 9 but only
in relation to 6! In fact, D~N, i.e. 38 does not come up at all as
an interim product as 18 and 28 did. And so, the question of
complements from 9 does not arise at all; and the decimal
€quivalent has only 6 figures and not 38!

-
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- : i gl e
asan for this is very simple. As w0 B3 g

. . 15 |

v 6 recurring decimals in 1 dec ﬂ!l:l! fi!'f"'i'f':'llfi and thml;I“‘
e asons Lo be explained i little later, this "';‘4“1-11 L'lil'|1|1,r-,.|tn[
:;E;T_E-is exactly divisible by 9, "“id;. ”*].;TTL-T: :;t:n:.;l ::I::LI is -ﬂ} I:Jiviﬁi’r:l.:
by 3. And, mn:;cqucnlly, Wh.m we ivi _L ; | iﬂ-n : : Xy The
six digits, we find that there is 1o remainder L ks n other Words
.i_has only 6 digits i1 its recurring deci mit ﬁi'*‘tl?_i‘- _

”Thcsﬂ have been obtained by the self-same  Ekadhika progess i
served our purpose in the casc of 5% and . ; .

We next take up and examine the casc of 7 which, besides
following the rules hercinabove explained, has fh': additiona]
merit of giving us theclue to a still casier process for the conver.
sion of vulgar fractions into their recurring decimal shape:

1 (42857

M = 755~ =

(i) If . we go on dividing 1 by 49 or .i4285%7 by 7 unul the
decimal hepins to recur, we shall doubtless get our answer.
But this will mean 42 steps of laborious working and is there-
fore undesirable.

(i) We therefore adopt either of the Ekddhika, methods and go
on multiplying from right to left by 5or dividing from left
to right by 3.

(iii} On completing 21 digits, we find 48, j.e. D~N coming up
and standing up before us; and we mechanically put down

the other 21 digits as usual by the subtraction, from 9, of the
digits already obtained. And the answer js:

4. 0020408163265306122448
97959183673469387755 i ]‘

() ‘ﬁ‘."d thff' gives us the clue just above referred to about a
Eml_mm“r method than even the Ekadhikea ones for the con-
version of vulpar fractions into recurring decimals. And it is
as follows -

By actual division of 1 by 49, we 404 020408
observe that the successive remainders JEEX:
=1Ir¢.°: mn peometrical propression  with _gf_
t{:enﬁzm;?: "..”*?]f“ 1:2 that the divi- 200
each s stmilarly related and that 196

ot set of the two digits in ihe quoti- et
€Nl 1% also wo related (o s predecessor. 400

The rc
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her words, this connotes and implies that, after putting

I¥ ﬂn 02, we can automatically put down 04, 08, 16 and 32 and

dow

g Ol
But when We reach 64, we find that 2 64 =128, i.e. it has 3

digits. All that we have to dn‘then 15 to add the | of the 128 over
1o the 64 already there, turn it into 65 and then put down not 28
put the remaining part of double the corrected figure 65 (i.e. 30)
and carry the Process EEI'EfI.IHj,-* on to the VEry fnd. 1.e. until the
decimal starts to recur. We therefore have:

l_&¢1ﬂ4ﬂ31632653ﬂ5122443}

W 97950183673469387755

This new method does not apply to all cases but only to some
special cases where the denominator of the given vulgar fraction
or on integral multiple thereof is very near a power of ten and
thus lends itself to this kind of treatment. In such cases, how-
ever, it 15 the best procedure of all.

Note: The rule of complements from 9 is actually at work in
this case too; but, inasmuch as for reasons to be explained here-
after, the actual total number of digits is 42, the first half of it
ends with the 21st digit and as we have been taking up a group
of two digits at each step, we naturally by-pass the 2Ist digit
which is concealed, so to speak, in the middle of the 11th group.
But, even then, the double-digit process is so very simple that
continuation thereof can present no difficulty.

OTHER ENDINGS

So far, we have considered only vulgar fractions whose deno-
minators end in 9. Let us now go on to and study the cases of
s, i, ¥y and other such fractions whose denominators end
notin 9 butin 1, 3or 7.

() Here too, we first make up our minds, at sight, as regards the
last digit of the decimal equivalent. Thus. denominators end:;
ifgin 7,3 and | must necessarily yield decimals ending I-".?'
and 9 so that the product of the last dig::t of the d::im:min:::gr
and the last digit of the decimal equivilent nuty e i =
Let us start with the case of ;- s

() Put down L in the shape 4% ° | T
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i) Take 5 one more than 4 as the Fladim. .
o | multiplicati ¢ Lhadhika paryy g :

Ii.‘[“ﬂ'l:?t multiphication or division as the Cise may 1, €y,
(v} Thus start with 7 at the right end. "

LA
13?

(¥) Multiply it by 5 and set down 35 g5 shown in the Mitep
iy

chart.
(i) Multiply 5 by 5, add the 3 to the product and

in the same way.

Now, 53 8-2=42. But that is D~N. 142 557

Therefore put 142 down as the first 25

hall’ according to the complements

rule ', #=.j42/85%

scl 2R ':I'Il-l'.'n

Or -:_1‘ '—~'_|,1g'
The Ekadhika being 5, divide 7 by 5 i42/85%
and continue the division as usual 214/{

with the same rule of procedure.
After getting the three quotient-digits 1, 4 and 2 vou find
42 as the remainder before vou. So tackle the last 3 digits
according to the complements rule and say:
2= 2 42854
(2) Let us now take the case of #¢ =4
(f) The last digitis 3 .7, the last digt HT76/923
in the answer will be 3. HT76 [9023
23
(if) The Ekadhike (multiplier or divisor) is .\, 4.
(iii) 1%y =5 After 3 digits whether by multiplication or by
division, 36 (D~N) comes up. So, the other half is mechani-

cally set down. And we say: e = 076/924
(3) Next, let us take 3% =%
(i) The last digit is 1. The last digit of o /b
the answer will be 9. 9/

(if) The Ekadhike in both ways is 10, -
(ifi) Immediately after the very first digit, we get 90 which i
99 ~9 before us. 8o, the complements rule operates.
(iv) And, in cither case, we get o'y = .0/0
(4) 5=+ giving 7 as Ekdadhika and 3 as the last digit of the
ANSWeT.
. By both methods, Multiplication and Division.
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210 than 4 as the Ekddhika Pirvg ¢

Or the
lﬂrﬂ - e 5 ]‘:1
(iif) Take 3 unﬁl?pﬂmﬁun or division as the case may p,
g u
quired m

= f T |i s I
J s

23
down 35 as shown in the Mary;
o1y it by 5 and set -
v) Multiply 1
: chart.-

d
[ﬁ} h{u][ipI_y 5 I::,." 5, add the 3 to the pl'l]dliﬂt and set 28 du%
z ¥ ‘
in 11?&;?{";:_‘;542. But that is D~N. 142 2355 7
?I?;r;-fnre put 142 down as the first
half according to the complements
rule ;;, 4~=.j42(857

1

=-1- )
*?}{j.ﬁ‘.&:r':?ﬁih being 3, divide 7 by 5 i42/854
and continue the division as usual 214/

i me rule of procedure.
E]rit:r :::tii I;e three quitiant-digits 1, 4 and 2 you .ﬂT_]d
42 as the remainder before you. So tackle the last 3 dipits
according to the complements rule and 54y
§=ay=-i42/851
(2) Let us now take the case of Py =
(1) The last digitis 3 - the last digit 076/923
in the answer will be 3, 076 /823

23
(if) The EXadhika {multiplier or divisor) is -, 4.
(Gif) fy =&, After 3

digits whether by multiplication or by
division, 36 (D~

N) comes up. So, the other half is mechani-
cally set down. And we say:

(3) Next, let us tage =gt

(1) The last digit is 1. Theﬂlast digi
: git of Ui
_ the answer wiy be 9, 91
(1) The Ekadhit.. in bath Ways is 10
(iii) Immedm!tl}r after the very ﬁrst. digit
: 99 g before ys, 80, the Complements :
{i¥) And, jn tither Case, we Bet = {4

C) £ PO
(1) 2 Uy EIVIng 7 ge EXadhit and 3 g5 the
Syl |
¥ both Methogs, MUItipIicatfnn and Dj

we get 90 which is
rule operates.

dnswer, last digit of the

vision.
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004347826086

Ee g 55521?3913}

1 =iy BIVINE 12 as Ekadhika and 7 y5 tj, last dig;
()37 By both the methods multiplication and Rfi‘-'isifa;t. ;

=0 5882352/9411764; e huave

THE CODE LANGUAGE AT Wonrgk

Not only do the Vedic Siitras tell us how to do
.nd rapid processes of mental arithmetic; but they have al
mhulﬂffd the reﬁl_l.lf:s in ﬂ:lﬂ Shape -DfspeL:ia] sub-Sitras Cuntaj;ﬁ.
ing merely jllustrative specimens with a master-key for “unlock.
ing other portals™ too. The abstruser details and the master-ke
are not given here; but a few sample-specimens are given of th:-::r
wayin which the code and the Ekanying Siitra explained in
Chapter 2 can be utilised for the purpose of postulating mental
cne-line answers to the question. The three samples read as
follows:

(1) Fa5: q%TF (AT (Kevalaih Saptakan Gunydt);

(2) F1 @ZT4: (Kalau Ksudrasasaih); and

(3) ¥ AHIFEARE : (Kamse Ksamadaha-khalairmalail.

In the first of these, Sgptaka means ‘seven’; and Kevalail
represents 143; and we are told that, in the case of seven, our
multiplicand should be 143!

In the second, Kalanw means 13 and Ksudrasasaih represents
077; and we are told that the multiplicand should be 077! and

In the third, Kamse means 17; and Krama-daha-khalairmalail
Means 05882353; and we are told that the multiplicand should
b this number of § digits.

EhNUw. if we advert to the “Ekanyiina” corollary of the Nikhilwit
ufﬂtﬂlﬁr on multiplication, we shall be able to WJ“”'{d ourselves
¢ operation in question and the result to be achieved there-
val;al;;tafpiisthﬂ multiplications accordingly as directed S
Iﬁf!ll] In the case of 7 as denominator, rIJ?-j}:iggg' = 142,1"Efr, and
2|IJ::5e are the six recurring decimal digits in the answe ke
e o1, 7 -7
ITin cimal equi ki :
Hnthe ¢ae nrlfn:géms 39999999? _ 05882352/94117647;

3-". ﬂliﬁ- h}' easy
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and these arc the
pivalent of T
In all the 3 cases WC '
work, And the sub-Slrda

| recurring digits in the recurring de,
we observe the rule of complements [‘1-;:,.,-,1_.{],ﬂt
nerely gives us the necessary clug to

. al and also a simple device Ekanyg,,
f of the decimd S g Mg
:‘hﬂ 5:12::?.; at the whole answer! And all this is achieved With
or

-code!
the easy alphabet-co
lht:ﬂlq;:ziz ::5“]'[5 may therefore he formulated as follows:

1433999 142857 _ -490s4.
T = Tggo999 999999
077%999 076923  wocgas. and
¥ 959999 999999 HI6IE5- 20
05882353 99999999
¥~ ~5939999999999999
— .05882352/94117647!
And, by cross-multiplication, we get from the above the

following results:

(1) 7 x 142857 = 999999 ;

(2) 13076923 =999999; and

(3) 17« 05882352/94117647

=9999999509999999 16 digits in all!

And, just in passing, we may note that this is the reason why,
in the case of all these vulgar fractions, the last digit of the
denominator 9, 3, 7 or 1, as the case may be gives, 1, 3, 7 or 9

before-hand as the last digit of th : W
cimal
fraction! B e equivalent recurring de

THE'REMAINDER-QU{}TIENT CoMPLEMENTS-CYCLES

3:;2::?;]:53?3! 4gain and again, noted the fact that, in the
of the qumie;t:ﬂ;? observed and analysed by us, the two halves
shall ngyw pmme?] o together give us a series of nines. We
such or similar ¢ Ia e b{t further and try to see if there be 3%
the MECessary ¢ - ?gwemfng the remainders. For the purpose :
more detajled :pﬂr.'mf“lfitmn and investigation, et us take P #

nmrderatmn of the remainders ﬂbl&il‘lﬂd in pak

¥ SUCCessive divee: .
ve dlﬂsmns of the numerator b}r the denﬂmfﬂﬂwr'

and let us stapy ith 1
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hat cuCCesSIvE remaindersarc 3, 2, 6, 4, 5 and L

. W > a1 i
we ]mf*ﬂm gy that, on reaching 6, i.c. D~N a5 the remainder,
g ”‘“-,:11'!: +s been completed and that the complementary
1. & - . dah 3
gl $5° oyt (o begin: Putting the above 6 ligures, there- 3 2 6
HE . w0 TOWS of three figures each, we have: 4 51
1 ITj L F i igi
{L.: dﬂhﬁcﬁ.:ﬂml ench vertical column of one digit from the
n“'} ¢ and of one from the lower onc gives us 3 2 6
ol i .
;;_I::.-Lm.:'tﬂl-ni-' 1.8 11 ._4...__5—1
O |

v B As OUT divisor is 7, it is but natural that no remainder
l':;"L':T than 6 i pr,rmis.sthe, : &. that the only possible Temainders
45 3 4, 5and 6. And these are the ones we actually find.
take up the case of 7y and note what happens. The
cpeaessive remainders are 10, 9, 12, 3, 4 and 1 the highest of
whichis 12, And when they are placed in two 10 9123 4 1
s, we find here too, that the last three 10 9 12

.:."": ]1 3?

Let us oW

semainders are complements—{rom 13—aof 3 4 1
13 13 13

the first three remainders.
In the case of i the cuccessive remainders are:

mise 4 69 516,’?2313115121
723 13 11 8121

71717 17 17 17 17 17
The last & remainders are thus complements
fir:t eight ones!
In the case of 19, the remainders are:
05 12 6 3 11 15 17 18
04 71316 & 4 2 1

919 191919 19 19 19 19
Here again the first nine remainders, when added successively

1o the next nine, give 19 each time.

h;?l‘f;il is clear that, w!mrt&s the qhuntir.:nt*halvcs are uni-

:_‘ml;ﬁ:;lﬂlemcnl‘s F'r:::m nine, th_e remainder-halves are comple-

B the individual divisor in each case. And this further
% our labour in making out a list of the remainders.

_from 17—of the

MULTIPLES OF THE BASIC FRACTIONS

Tk

~uf f'Hr 4= : )

= Uniity 'E“L have dealt with vulgar fractions who
» But what about fractions which have some

g¢ numerator
other nume-
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rator? And the answer js: “There are severa] g
methods by which, with a tabulated 1jst before g ﬂf;  ang b
obtained by one or more of the processes above gy oy Ty
even independently, we can readily put down the ,,_,E::T Uty
mal equivalents of the vulgar fractions of the type fHE‘ s
discussion.” G ng,

Let us, as usual, start with 7 and frame a chart a5 folloys,
F=.]42854 ;
F=.285714
§=.42857i
§=.571424
A 14285 and
3 =.857145

In this chart, we observe that, in aj the

having 7 as thejr denominator.

(7) The same sjx digits are found as in the case of 1:
(i) they come up in the same stquence and in the same direction
as in the case of 1,

(ifi) they, however, start from a different starting-point but trave
in “Cyelic” order in what is well-known as the “clock-wise"
order.

(¢v) and with the ajd of these rules, one can very easily obtain
the recurring decimal equivalent of g vulgar fraction whose
numerator is higher than 1.

In fact, a person who is actually looking at a statement on a

board, a piece of paper, a slate etc., to the effect that 3 =.]4285,

:| -—
has several easy alternative processes to choose from, for deter-

mining the decimal equivalents of all the other five possible
fractions having the same denominator, j.e. 7. They
follows:

Proper” fraction,

are as

THE First METHOD
1. The various digits can be numbered ang marked in ascend-
ing order of magnitude, thus:
(f) Unity being the least of (1) (3) (2) (6) (4) (5)
them, the cycle for  starts 1 4 2 ¢ 5 7
with one as its starting .
point, travels in clock-wise cyclic order and reaqs.

j42857%;

S S
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)2 being the second, ¥ starts with 2 and gives us the answer
(7385714 | '
(i) There being 00 3 at all, the third digit in ascending  order is

4 So¥ begins from 4 and reads:
428571,
(iv) The next digit, i.e. the 4th in ascending order actually being
5, 47 hegins with 3 and gives:
AT1425;
y) The fifth digit actually being 7, 5/7 commences with 7 and
reads:
414285 ; and
(v) The 6th and last digit being 8, the sixth and last fraction, i.e.
& gtarts with 8 and says:
A57142

This is the first method.
Yes, but what about those cases in which the number of deci-

mal places is more than 10 and thus, in ths tabulated answer
before us, some digits are found more than once?

Yes, it is perfectly true that, just as some digits are found
absent as in the case of 3 just seen, there are other cases where
the same digits are found more than once. In fact, in every case
wherein the number of decimal places is more than 10, this is
bound to happen; and there provision too must be against it. In
fact, the remedy is very simple, i.e. that, even where digits occur
more than once, -there still are gradations; and, if these ar®
taken into account, the cyclic order and the ascending order of
magnitude will still operate and serve their purpose.

For example, in the case of vy W€ ‘have 05882 ... at the
very commenceinent: and there are two eights before us. Yes, but
88 is greater than 82: and therefore we should take 82 first and
88 afterwards and do our numbering accordingly: =

6

Ve 5 8 8 23 5294117
(7) 23 (13) (1D ¢ (12)

(

(1) (10) (15) (14) (4) (6) ) )19 8) (12
us, 1% starts with zero; 5 with 11; % with l‘::r , ﬁﬂ:w’icg.:?

B A ;
17 With 29; -8 with 3; e with 41; B with 477 17 18 st

A : g ' . . 12 with
With 58 11 with 6: 12 with 70; 13 with 76; &# with 827 & i
8%; and 1% with 9. The arranging in ascending order



tude has, of course, to be done carefully and c¢qpp
must be admitted that, although the procedure of C

numbering is quite reasonable and scientifically Correct, }rcf i:“,'j
rather cumbrous, clumsy and tiring. Hence the peeq for Elthﬁ
methods. . ¥

Yes. but what about the cases wherein the number of digits
the decimal equivalent is much less than the denominatey of th
vulgar fraction in question and has thus no scope for meeting a1
the possible demands?

Yes, /s issuch a case. The number of possible multiples js 1.
and the number of digits in the decimal equivalent is only 6, (for
s =.076/923). What is the remedy?

The remedial provision is that a multiple or two will do the
trick quite satisfactorily and neatly.

Now, 1 = 076923

.. By simple multiplication by 2,

i =.153844

And now, there are twelve digits in all; and these can meet the
needs of all the possible multiples.

Thus, {5 =076923; and & = .j53844

1w =230769; and 2 — 307693
S5 =384615; and +& = 461534
15 =-638461; and -8 = §15384
o 15 =-69230%; and 18 69230
S 13 =846153; and 32 — 92307%

The procedure is there and is quite correct. But, after all, one
must confess that, even with this device, this counting and
numbering procedure is stji] a cumbrous, clumsy and tiring pro-
cess. Hence, let us repeat, the need for other methods.

cetly, By -
Ountjp, '

THE SEconp M ETHOD

The second method is one wherein we avoid even this num-
bering and marking ete., and in accordance with the Adyam
Adyena rule, multiply the opening digit or digits of the basic
declr'mai fraction 14285% and determine, therefrom the starting
Point for the multiple in question. Thus, . j42857

4 starts with 14 , , . . 7 should start with .28 cte., and in

clotkwige eyclic order pive 485714
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a gught 10 start with .42 ete., angd

: must §té rt with .536; but there ig
sf and SO making allowance for
?ﬂ;r}-ing over of a surplus digit from
with 57 nrlld i-ilr]’ 7 ;:j-ﬁ'la' 14:-!8., I
Eiﬂlilﬂr y 7 Should star with 70: but for
in the immediately preceding case, it aﬂuan;tf&;z“:zt;ca;?n as
jves us: 14285; and ¢ should start wity g4 actually and
with .85 and yields the answer: §571431 ' vy starts
This is the Second method.

Bive .12857;.

lz::- 56 Ibut only .57 before
pusfmblc Nay, the actyg]

the righy leftward, we sta{rt

THE THIRD METHOD

The third process is very similar; but it bases jtself not on
Adyam Advena but on Antyam Antyena. In other words, it deals
not with the opening digit but with the closing one. Thus,
*+ % ends with 7, 142857
. 2 must end with 4 s Itis 385714
S #shouldend with 1 ., 1tis 42857]
« 3 pught 1o erd with 8 ., Itis 571428
. £ should end with 5 ., Itis .714285
end ., & must end with 2 -, Itis .B5714%
This is the third method and the easiest and therefore the best

of the lot.

INDEPENDENT METHOD

The above described methods are all for the utilisation of a:t:ﬂu;
knowledge of the decimal shape of a fraction whose numer

is unity, for deriving the a;nrre::p::-ﬂdill:g deiffimi iiifl;ln;f ;T;
i i is1 ight, so far :
multiple of that fraction. This is all right, e il

what about a person who has not got such a
to refer to? In such a case, should one ne_wl}f &
¢hart and then manipulate jt—cyclically—m one
Xplained, for getting the required result?
That would, of course, be absurd. h, without resorting
have a totally independent method, I fﬂ',ﬂfed table, one Gifl
t0 any such previously prepared of il F:: hand! And the whole

; ; . tion @ ' aine
:ﬂﬂ}' deal with the pﬂftlﬂlulﬂ:‘n{;icﬂg has been already explain

prepare the basic
f the ways Just

uch jpersons, We
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in respect of the basic fraction and without the Slightegy
ence or deviation in any particular whatsoever therefroy,
For example, suppose you have to decimalise 2, Your

. B : 45t g

will be 1 and as § =3, your Ekadhika Pirva will be s, , %
W 1

on dividing by 5, in the usual manner; and you pet the ﬂha“!

explained in the margin: 2 =53 = -14422? F5TH

After you get the first three digits 4, 2 and 8, you find thy Yo
dividend is 28; but this is D~N, i.e. 49—21. So you may g,
here and put the last three quotient-digits down as 5, 7 ang 14
complements, from nine, of the digits already found.

Or you may continue the division till you get 21 as the diy
dend; and as this was your starting-point, you may put the
digits down as a “recurring” decimal.

Thus # =.12857]

Try this with %, 12, % and so on, with any number of case
And you will always find the same thing happening right throug
all of them. Thus, for those who do not have a tabulated schedul

before them, this absolutely independent method is also ther
and you can make full use of it.

Note: 1. In this independznt method, it should also be note
that if we have to decimalise 2, 2, #: 4, § elc., we have merely t
divide 10, 20, 30, 40, 50 etc., by 7 and put down that remainde
as the first remainder in each

particular case and that the worl
can be done automatically thereafter.

2. or, we may pre-decide the last dj git in each case by takin

the last digits of 7, (D4,(2) 1,28, (3) 5, (4) 2 as the last digit
of the decimal equivalent of 3,4, 4.4, % and 21

I Very instructive and interesting
ing this question of conversion of
mal ones ip respect of the remainders,
& benefit of the students, we propose now
marise, supplement and conclude this portion

ures characteris
Vulgar fractions into deg

uotients et For t}
to recapitulate SUm
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2
(1) As regards the remainders, 19
D ~ N comes up before us ag 4

d remainder, ¢ o
ders arc all ED“‘P]‘JI“CIIES-——-ﬁ-Qm th s the Iem

MR i UNIng remajn.
—of the remainders already obtajneg. P 1. the denominator
(2) This automatically means that the quor: .
_ : olient-
gbtained and the quotient-digits stil to Eﬂ [:fl?]:jd:gnls already
ments from nine! Ve oemple
(3) If we take any remainder and

e multiply it by ¢ i
the last digit, the last digit of the g Py 1t by the Caramgikg

roduct is actually th ~
at that step. The formula here is frutfir sisq %%qun}neut

Atikena Caramegpa) which is therefore of the utmaost
and practical utility in mathematjcal computations,

(1) # The remainders are 3, 2, 6, 4, 5 and 1. Multiplied by 7 (the
Caramanka) these remainders give successively 21, 14, 42,
28, 35 and 7. Ignoring the left-hand side digits, we simply

put down the last digit (Caramaika) of each product; and
lo! We get 1 =.{42857]

(2) v's The remainders are 10, 9, 12, 3, 4 and 1. Multiplied
successively by 3 the last digit, these remainders give 30, 27,
36, 9, 12 and 3. Ignoring the previous digits, we write down
merely the Caramdnfca the last digit of each product; and
lo! & =.076923!

(3)#% The remainders are 10, 15, 14,4,6,9,5,16/7,2,3, 13,
11, 8, 12 and 1. Multiplied by 7, they give us successively:
70, 105, 98, 28, 42, 63, 35, 112, 49, 14, 21,91, 77, 56, 84 and
7. Dropping the surplus, i.e. left-side digits and putting
down only the Carmasikas the right-hand most digits, we
have - = .05882352/94117641

t

In fact, the position is so simple i EIEE:; ﬂtm:tngct;::d d?jp

multiply the whole digit, write down the pro utc D

the surplus digit or digits. We _”E‘:d only pu tsot as each step
maiika the right-hand-most digit at the very ou

and be done writh it!

(Segani
significance
For instance,

inders
I 1 character of the reman :
(4) The geometrical pmgr&ssx;:;r:mmhip o

Eives us a clue to the internal re | Thus, as we know one

der and jts successor or its predecessor: 1: u{'.T. Tk,

Temainder, we practically know all the 1€3 mainder is 3, we can
In the case :]ff}: Ae we know the first 1
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multiply any remainder by 3, cast out Lhe SVl |
immediately spot out and announce the ey m"“'i"ih:r Y 4
3x3=9;9-7=2;  2is the second TCMaindey,
2+ 3 =f. This is the third remainder

As 6 is D~N, we may stop hiere and by the rule of
ments from the denominator, we may put town 4, 5 and Ft.lmr’l:'
remaining three remainders. 4 thy

Or, if we overlook the D~N rule or prefer to
multiplication by 3 the geometrical ratio, we pet:

63 =18; 18— 14=4; and this is the 4th remajnder,

4%3=12; 12— 7=35; and this is the 5th remainder,

3% 3=15; 15— 14=1; and this is the 6th and Jagt Temainder,

We have thus obtained from the first remainder, ] the 1.
mainders:

3,2,6,4,5and 1.

And from these, by multiplication by the Caramdika T, we pet
all the 6 quotient-digits as explained above

-1,4,2, 8 5and

This is not all. Instead of using the first remainder 3 as our
geometrical ratio, we may take the second one 2, multiply cach
preceding group of 2 remainders by 2 and get 32, 64 and 51 for,
by casting out the sevens, 6x2—7=5;: and 4% 2-7=1. And
multiplying these 6 digits by 7, we again get the Caramaikas

142857 as before.

Or we may take help from the third remainder, i.e. 6, multiply
the preceding group of 3 remainders and get 326, 4 51 for, by
Casting out the sevens, 3 w6 — 14=4; 2% 6—7=5; and ﬁ:ifr":?j
=1 And, multiplying these same 6 d; gits by 7, we again obtait
the Caramasikas 142857 as before. |
m:;l;;; I;:t::ced}:re is, of course, equally applicable to the fﬂuzi]ftl
as before ?E,ﬂ”.“f““* 1.e. 4and 5 and can get us the same e !

i - 115 15 doubtlegs purely academical and of no practic®
Sing a principle, nay a universally ope-

;i:mi;.i Mfath-:m&tical law and must therefore demonstrate 1t
1 Universality of application,

20, if we take the 4th remainder, j.e. 4 and multiply the ™

Ainders by 4, we again get 3264/51- F?::
7ol 4%6-21=3; 4x4—14m2; and !

B on wiiy, o
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only difference is that the first two g
re found 1y
ave al.

rendy started repeating themselves)

If we now take the 5th remainder, ;.
ceding group of 5 remainders by 5, 4
335—14=1;2%5-7=3; 5% 628
i,

And, if we follow the same procedure wit :

i.e. 1 and multiply the group of prece diu,[g hr;:aiii:::rganlmcr,
will, of course, get the same preceding remainders over ag;i A

(5) In the case of 17, the first four remainders are: 10 ;g y
and 4. As 4 is a manageable multiplier, we may make s of it as
aconvenient and suitable remainder for this purpose. Let us
therefore multiply the group of four remainders already found by
4 and cast out the seventeens wherever necessary. And then we
find:

4 10—-34 =0 10, 15, 14, 4
4%15—51-=9 10, 15,14, 4, 6
4 14— 351 =3 10, 15, 14, 4/6, 9, 5, 16/

4% 4=16. But as D~~N =16, we can stop here and set down
all the other remainders by subtracting each of the above digits
from 17:7,2,3,13/11, 8,12 and 1. And, multiplying each of
these 16 remainders or rather their Cargmankas, i-e. units digits
by 7, we get:

+:.05882352/9411 T6417

STILL ANOTHER METHOD

Besides (1) the corollary-Sitra (2) each rerr{amd:r}illehg lm:;
digit method, (3) the Ekadhika process from right t'ﬂu o
(4) the Ekadhika method from left to right, thern:_ is still ano =
method whereby we can utilise the geametnhﬂal lfrgﬁ;ﬂzlm}r
relationship and deduce the same result by a simp i
Process, And it is this, namely, that as soon &3 mdm other, we
clear ratio between one remainder ot diﬂdﬂﬂd. a IE:: pl[cs;tian
can take that ratio for granted as hefﬂgl of umiversal ap
and work it put all through. For exampie, inders
In the I:-F_‘I.:r]:l of 19, we I%:wc 10 and 5as the first uw:h]i:tﬁ:;?u in
and we note that § is just one-half of ten: K"-'“Fmgld be one-hall
View, we can deduce that the next remait

IZits

: ply the -
€ again get 326451 , .+F[f;r

=25 SX 4142655359
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of 5. But, as 5 is not exactly divisible by 2, we g44 19 15 44
it 24 and put down its half, i.c. 12 asthe next TeMmainge, . ke

pives 6, 6 pives 3, 0, 5 12, 6, 3, 1i, 15, The Iy
' 4, 17,13, 16 YA
3-19 pives 1, 9,14, 7,13, 16, g g, ,

: o
11--19 gives 15,

15-1-19 gives 17 and 17+4-19 gives 18. And we stop there B:Hd
down 1il¢: remaining half of the remainders by Euhtrauuﬁgl
from 19. Having thus got the remainders, we multiply lh;
Caramdrnkas by 1 the last digit of the answer and we get th
quodient-digits antomatically.

N.B.: The ratio in question may be noticed at any stage of
work and made use of at any point thereof.

In the case of +%, we have the remainders 10 and 15 at the Very
start. We can make use of this ratio immediately and through.
out, with the proviso that, if and when a fractional product jg
threatened, we can take the denominator or as many multiples
thereol as may be necessary for making the digit on hand exactly
divisible by the divisor on hand.

Thwus, in the case of +%, we have the remainders 10 and 15 to
start with the ratio being 1 to 14. So, whenever one odd number
Crops up, its successor will be fractional. And we get over this
difficulty in the way just explained.

And when we get a remainder which is numerically greater

than the divisor, we cast off the divisor and put down the remain-
der. Thus,

10 gives us 15; 154-17 gives
us 48, i.e. 14; 14 gives us 21,
1.c.4; 4 gives us 6; 6 gives

us 9; 9417 gives us 39, je. 5; 5417 gives us 33, i.e. 16. And
there we can stop,

the

10, 15, 14, 4, 6, 9, 5, 16
T 2, 3,13 11, & 12 1

NUMBER oF DECIMAL PLACES
Students generally fee] puzzled and non-plussed as to how to
know beforehand the n

sion, the decima] I_Imb‘-‘_:f of der.:iln.nl places which, on ﬂi:ﬁ
actually consist of Iﬁ‘qIIw&Ieut of a given vulgar fl'mctmn r‘;ﬂ
haVIng—in the fe . - ISWET hercto, we must point out that,
AVINE—in 1 1:_ mimediate]y Preceding sub-section on this subject
—made ;4 dnimled, analyijea] study of the successive remainders:



e haves in cveTy case before yg, Practicyy

rom which without actual divisigy lo

jate beforehand all the forthcoming yep, . o

]ﬂll'."d smlcmcnt his If‘l:-': f’uﬂhur mert that i Enﬁ. And the taby.

any time, at a 11ml'!mntf notice! n be Prepared, oy
All this means, in effect, that,

¥a tnbul
the very g aled

(i) As soon as 1 or other starting point is rey
analysis, we will have completed t
sation and therefore know the actyp numb
places coming ahead. The cases 1, As, - 4,::::[ i
prmfﬂ‘-'i this. » 9y CIC., Rave al]

(if) As soon as we reach the difference between the numerat
and denominator, we know we have done half the work m?;
that the other half is yet to come. The cases of # etc., which
we have dealt with in extenso have proved this too,

(iii) As soon as we reach a fairly small and manageable remain-
der in our mental calculation, we know how many more stepe
we should expect.

Let us again take the case of by way of illustration. The first
remainder 15 3; and used as a successive multiplier with the pro-
vision for the casting out of the sevens, that first remainder-
multiplier brings us on to l.

When we. have done two steps and got 1 and 4 as the first two
quotient-digits, we find 2 is the remainder. Multiplying the first
group of two digits 14 by 2, we get 28 as the second-group with
the remainder also doubled, i.e. 2x2=4. 14/28/. ;

Multiplying 28 by 2, we get 28 x2=3064s t.hﬂ third group an
432 =8 as the remainder. And then, by casting out ,[h& Ef“ﬂﬁa
We obtain 57 as the quotient-group and 1 as the renm:ngzi; vl
43 this was our starting-point, we stop fuﬂhf:r‘cumpllllﬂ ¢ in the
decide that 2, when decimalised, has 6 decimal piace
answer, I - that,

Going back to the case of 7%, the studen! wili r?th?:irM >
WNer 4 steps, we got .0588 as the qunmni u]rf* we obtaine
Ttmainder. Multiplying the former by the ;‘i - :,Iw remainder;

92 a5 the second quotient-group and 44 = ¢ g digits on hand
4d there we stopped, becausc We had the firs ;

o us 16 digits-
d knew the other 8 digits. Thus v BYe 18
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As a geometrical series is of the standgarq for
o on for help; T 4 ang b
the case of 7'y and so on for helping us ¢ Pies: ¥
number of decimal places in the answer. Thys ;
Note: 1. We need hardly point out that the Ekddhip.,
has the supreme and superlative merit of lightt*r::'ng olr di:jg'&i
I
of -1.
we have to do our division-work, at stage after gtq by Jmu;
sive division, not by 19 or 29 etc., the original denominatg, bu;
ith regary
to every case, i.e. that we pzrform all our Operations—ip thi
system—with much smaller divisors, multipliers ete.,
rule is invariable. What a tremendous saving in effort, labogr,
time and cost !
in detail, because it is very essential that the whole matter should
be clearly understood, thoroughly assimilated and closely follon-
enabled to work out these methods j ndependently in other simi-
lar cases and to Znow—with absolute certainty—that any and
the corresponding recurring decimal whatever may be the com:
plexity thereof and the number of decimul places therein. Infact,
suitable—for all possib]e denominators and for all possibk
numerators, the
be a bugbear ¢ * the contraff
they should be e g o the student. On

e L,
on, we are able to utilise 2 and 2% in the ¢ag, of 1 e
principle utilised herein.
Meth
and multiplication work. For instance, in the case otk g
by 2 or 3 etc. the Ekddhika-pirva- And this is the case wi
and g,
2. We have purposely treated this subject at preat length ang
ed so that, even without the hel p of a teacher, the student may be
every vulgar fraction can be readily tackled and converted into
inasmuch as these simple and easy processes are available—and
decimal and espacially t urrin deciml
should ng longer peplally the. reo e
most welcome of all welcome friends!

ERISTIC FEATURES (GENERAL AND SpECIAL)
59 ete, $ Of fractions
l Nators

5 than th,
F TI.':.'l E‘Iubnra

Genergis,, | ra S“h‘lnulri le . tual ﬂﬂ'ﬂwl
OPeratig, ;J'J. the ryl, Ple thereof, is the ac

i
L] - : ur]{I
““Hﬂslth{-m. “omplements from nine is {0

: e
With prime numbers like H’]ﬁ cf;
vthe maximum number of decimal P

1 i
lio “hominator This is self-evident and
I1. :



For fractions like 4%, L. .1 i )i
f{::,mdm::s of prime nlllllhcrsﬁhnt:.;:l Where th, de’ i Ak
;hr:: various respective factors in each o depends o
cJucidated. : <! [preddinly

(5) If and when thn? decimal-fraction obtained g G
factors of the denominator is exactly divisible b ;IT v of the
or factors, the division by the second factor 1 r.:a:; e
And therefore the number of decimals obtajpag I:5 HE
is not added to. Thus, ¥ the

- | 142857
Orgs="3

Here, the numerator on the R.H.S, being exactly divisible b
3, it divides out and leaves no remainder. Therefore, the n"mhi
of digits continues the same.

This means that, in every case wherein the complementary
halves from mine are found, the numerator on the R.H.S. must
necessarily be divisible by 3, 9 etc. And by multiplying the deno-
minator in such a case by such factors, we cause no difference to
the number of decimal places in the answer. And consequently,

we have:
- I 42851
N T
Going back to the Ekanyiinena Sitra as explained in connec-
tion with the Sanskrit Alphabetical code, we know that 142857
=143%999 — 11 3¢ 133¢ 3% 37. This means that since the nume-
rator is divisible by 11, 13, 3, 9, 27, 37, 33, 39, 99, 117, 297, 351
and 999, the ‘multiplication of the denominator 7 by any one of
these factors will make no difference to the number of decimal
places in the answer.
- 1 076925
D=3~ 3 +
Here too, all the above consideration
Zﬁﬂi =TTx999 =31 7x11x37. thlﬂ_rﬂff'_f:s e
YMmbination ill, by multiplying .
Make no di?fzfet:;:;u;i E;; nu::nhr:r of decimal placts
qg%gg=9995{ 1001 =999 x Tx 11X 13-

s under the same cat

ase as will

Temainder,
first factor

=.01587%: and so on.

since

g HP'FIF' i&iﬂd'l
these [factors and

denominator,
MNote.

1 egory with 22
-1 E
O3y - BETE and come

)
IEH:& T II]F" T RN R, (. [ -‘| a

)

N

E s =
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L. js a special case and stands by itselp at .

hafg I;:c:1 expected to provide for 48 places, Buyt, -:;agy i Shoy
fact, it gives only 42; and ff}r a pcrfi.jctl}f valid apg u: n“‘::imr b
i e. that, out of the 48 ‘pnsmhle mtf]tlples:, SiX, i.e. &, 1 N ;‘;ﬂa:.n.
3% and 4§ po into a different family, as it were 4pq take o
1,83 ¢ % and ¢; have there E]&L':EE tlhera % 142851
and so forth and need no place in the wi CIC, group! pp. fi

since 6 go out of the 48, the remaining 42 accoynt far th, ,:‘.!
places actually found in the decimal equivalent of ! This i1
a poet’s mere poetic phantasy but a veritable Mathemgg,
verity! , ‘ 1

(8) +%; 15, in & way, an exception, as it -funtmna only 13 digits,
And, as thisjs an odd number, the question of the two compls.
mentary halves does not arise! 13, however, is a sub-multiple o
78; and there is no deviation from the normal in this respect. Ag
at-sight-one-line mental method will soon be given for v in this
very chapter.

(%) Similarly 3% has 44 digits and thus conforms to the sub.
multiple rule. And this implies that, like %, it will need another
complete turn of the wheel in one of its multiples in order to
meet the needs of all the multiples. An incredibly easy method

will be shown in this very chapter for reeling off the answer in
this case.

(10) 5% has only two recurring places .0j:

<an be and has been provided for, therewith.

_ (11) In the case of basjc fractions ending in 3, the denominator
is first multiplied by

i 3 and gives us the Ekadhika, and the last
digit in the answer jg also 3.

(12) 7 like 4% has only two dec;
cimal 03.
(13) 3 has only 21 digits, 21 Do 48

: is @ sub-multiple of 42 but is odd
&ndI 43;“:5 o scope for the complementary halfem
EIS i3 has only 13 digits a sub-multiple but odd.
{lﬁ; i has only 41 digits similarly,
Ta IS Special, Sinee 73 %137 =10001 ang since
10001 #9999 = 99999904 Sk = 127 1379999

I ~ 959055t
01369854 by Ekanyiing Stitra, o s

{! ?Jﬂﬂl'_! E‘_ﬂ-nv‘:r
' ly, ploa 73 735 9999
" TO00T = 3550p555- = 00729921

i
-iﬁim

but the whole gamut

e

J
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ﬁlg} e will be discussed a little later, =t

(19) In the case of fractions whose den
ot digit is also 7; and the Ekadhitq i
jinator mgItipHcd by 7.

{Eﬂ.} % and 'ilf have been dealt with in detail alread

(21) JA-and g% are special becayse 27% 3709 ;r
ocimal forms are 037 and .027. + And thej;

(22) o has 46 digits.

Ominatg,

' 5 endip 7
0btained from the dlm:]::e

1

(23) 3 = T3 2nd has only 18 digits,

(24) +#+ has 33 digits (odd).

(25) +% has been discussed already (number 1),
1

(26) 3% = 3973 and has 28 digits.

(27) 3% has its full quota of 96 digits,

(28) In the case of fractions with denominators endingin 1, the

Ekddhika comes from the denominator multiplied by 9, and the
last digit is 9.

(29) v = .09
(30) & = "ﬂ% and has been discussed under 7.

(31) 5% will come up a little later.
(32) Ar is special -- 41 x 271 =11111

.-'i":'= 11111 =y W 0 ( )

71 TINNl . 99999 99999

() = - ?‘x , and has 16 digits

(35) & has 60 digits.

(36) % has 35 digits (odd). L

{3?} P = ,_.,I_ = ﬂﬂ. __,.;,13345519 (a VEry interestiing
Tiumbﬂrjr

(33) Aﬂdﬁ conversely,

o b R

ady been discussed under 7 and

: 11999 _ w10/989
"Mer 13. And besides, v Tgg1 =~ 999999

[33} o= ]*31}1—? and has alre



228 Vedic Mathematies

Bur

But here a big but which butts in and exclaimg:. “Yeg.

is all right in its own way and so far as it goes, But, 44 Dui“
minators go on increasing, We note that, although Iaﬁtdt{"{'
of the decimal fraction is 1, 3, 7, or at the most 9 ang e Ui

vet, the Ekadhika Pirva goes on increasing steadily a)y theﬁm*

and we have to multiply or divide successively by bigger 4y

bigger Ekddhikas, until, at last, with only two-digit denumfnmm

like 61, 71 and 81 and so on, we have now to deal with 55, 64 1,
ete., as our multipliers and divisors, and surely this is nos such ay
gasy Process.

The objection is unobjectionable, nay, it is perfectly correg,
But we meet it with quite a variety of sound and wvalid answery
which will be found very cogent and reasonable. They are a5
follows:

(1) Even the biggest of our Ekadhikas are nowhere—in respect
of bigness—near the original divisor. In every case, they are
smaller. But this is only a theoretical and dialectical answer from
the comparative standpoint and does not really meet the intrinsic
objection about the Vedic methods being not only relatively
better but also being free from all such flaws altogether! We

therefore go on and give a satisfactory answer from the positive
and constructive stand-point.

(#) Even though the Ekadhika is found to be increasingly un-
manageably big, yet the remainders give us a simple and easy

device for getting over this difficulty. This we shall demonstrate
presently.

(iif) The Ekadhika so far explained and applied isnot the whole
armoury. There are other auxiliaries too, wherein nio such diffi-
culty ean crop up. These we shall expound and explain in a sub-
sequent chapter of this very volume; and they will be found cap-
able of solving the problem in foto: and

(i) Above all, there is the crowning gem of all coming up in 3
;‘E‘“ '3}13]"‘1::!‘ and unfolding before our eyes a formula whereb¥,
owever big the denominator may be, we can—by mere mental
one-line Vedic Arithmetic—read off the quotient and the remain-

der, digit by digit! This Process of “Straight Division”, we have
already referred to and shall

thig

arflais amd Ao o abmata A a FEET
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e T Imt““*ﬁﬂcuuﬂ

[n the meantime, we take up and explain the |
remainders come 0 OUT rescue and solye h. p;:fl.}' in which ks
for US: eular problem

Let us take first the case of . We iy .
a5t digit of the decimal is 3 and that the E—’Cﬁldn;a;z?a;ﬂ? that the
we work as follows: 15 7. And thep

(i) Multiplying digit after digit as usual by 7, we haye:
e = 04347826086 /95652173913 o
6 (34311526 2
or (i) dividing digit by digit as usual by 7, we have:
o= =.04347826086/95652173913
235514 646

(iii) These are the usual Ekadhika Parva methods. But we ob-
serve in the first chart, after two digits 1 and 3 have been
pbtained, the next leftward group 39 is exactly three times
the extreme-right-end one and we can immediately profit by
it. Thus 39 gives us 117, out of which we put down 17 and
keep 1 to carry over; 17 gives us 514-1=52. 52 gives us 136,
out of which we set down 56 and keep 1 to carry OVer 56
gives us 168-4-1=169. Of these, we put 69 down and keep 1
to be carried over: and so on. In fact, the whole procedure
is exactly like the one which we followed from left o right
in respect of & (=.020408 16 32. . .). Thus we have:

& _ 4434782608, 69, 56, 52, 17, 3%, 13

% o
02 ight,
or (i¥) if we wish to start fromthe left end, go on to the righ

that too is easy enough.
We note that, the first digits b
Temainder. We can immediately work
Plying each two-digit group bY 8 as we
“nd frame the following chart:
04 :32:72 :24 :08 . 64 ; and so OT
A kI
:34:78 :26 ; 08 : 69 :
.:HTEE multiplications by 3 to the left and bY
¥enough, Aren’t they?

§ as the
2 completed, W& get ._
i out this process By muiti

did in the case of & by

g to the right 45



230 Fedic Mathemagies

s now take up and try .- as promijgey i |
t‘.}b[;‘?zll:ﬂ}f, the last digit is ? and the ,&Tkt?‘_;mk:'zsﬂzrlm 9
rather unwieldly as a multiplier or g¢ divisor, We 5hu;]¢ 'y
fore try and see what we can get f'mm the feMainder, ,, M,
them to be 10, 6 etc. We can immediatel 5 Ih'c fing
our purpose and work in Il_nsr way: 1 6

-02 being the first two digits of the quotjen and o
ratio, the next two digits are obviously 12, These x g Shn.u[dg Oy
us 12; but as 4 will be coming over from the right, we a4 y thge”:
and put down 76. This should give us 456, of which the firg; digi
has already been taken over to the left. So 56 Temains, By, e
will be increased by 3 coming from the right and wi| becoms g
—This gives us 57, 44 and 68 for the next three 2-digit Srou,
and 08 for the one thereafter. The 08 group of two digits 23
us 48 which, with the carried digit becomes 51. This gives us
and 36 which becomes 38. And then we have 28 turning into 29
then 74 which becomes 78 and so forth. Thus we have;

w7 =-021276 59 57 44 63 08 51 06 382/
97 8

Here we notice that, exactly after 23 digits, the complements
from nine have begun. So, we can complete the second half and
s2y 5y =-02 12 76 59 57 44 68 08 51 06 382

97 87 23 40 42 55 31 91 48 93 617

We have thus avoided the complicated divisions by the original
divisor 47 and also the divisions and multiplications by the u-
Manageable Ekddhikq 33; and, with the easy remainder 6 as ouf

multiplier, we haye been able to obtain all the 46 digits of e
answer |

This mere]
Processes |
kind of cag
fit into,

L § Pounge up

¥ shows that these are not cut-and-dried mﬂhﬂrﬁi
ut only ryles capable of being applied to the Ef 1
©s Which they are particularly designed to mee

And, as for 4 gy

: versalapp”
Cation, “and-dried formuylg capable of universdl®

that tog i Fnrlhmmjng as already indjcated and V!

rod 10
_- o — " - rﬂmlscda
deal, Iy, this cage. th::I; 53 Which, a little earlier, we P

1t 78 28 \vhl':h
IS nearly aq b ast digit i5 9; and the Fladhika i d

hot




NCCHTEI Deeingly
therefore sift the remainders and fing N

fromt. .
[n this case, we find 7 is the first

[eaving the Ekiddhika process out of g S Gne ¢
may use the geometrical progression Princip :-r the
purpose thereby as we did with 6 in the cage and
prnr:ced further and see whether a still
remainder is available further up.

Well, we observe:

23 =.032258 with remainder 2, The actual remain g

are: 10, 7, B, 18, 25 and 21 ?

h:;l:;sf s.szlf] :]s;mst admirably, .ami we proceed further with the
.D32258/064516/129,032/258064. . .

But this means that, after only 15 digits an odd number, the
decimal has already begun to recur! So, we simply say:

1~ =.032258064516 129!

What a simple and easy device!

Let us now take up &=, The last digit is 7; but the Ekadhika
will be 68! So, we seek help from the remainders. They are: 10,
3 etc., and the quotient-digits are .0103 . . .

So, multiplying each quotient-group of 2 digits each by 3 as
we did, by 2, in the case of i3, we get:

1o =,010309 27 81
)

—

33 etc.

Let us take one more example (i.¢. 537) and conclude, The last

digit is 7: but the Ekadhika will be 698! It will surely not be an

1 : ienced statis-
enviable task for even the most practised and experienced
E uch a big figure!

tician to multiply or divide, at aach step, by 8
We therefore again seek help from the remainders and the geo:

Mmetrical progression rule.
The quotient-digits are .001 etc-
are 10, 100, 3 ete.! This means that

4 Eroup of three quotient-digits by 3 and get ©
; Mumber of decimal-places. We thus have:

s x
a suitable auxiliary thepe

1nificant remainder

mﬂmgnt. we
achieve oyr
Ore eq BEI}’ mﬂ-“ﬂgﬂﬂ.ble

in order

and the SUCCESSIVE n:fmaindc.ﬁ
we should multiply €ac
ur answer to any




R
gar =001 : 003 ;: 009 : 027 1081 ;243 L 729
; . i : * - - _'_"I.
?_jl_éic,
THE Conversg OPERATION
Having dealt, in extenso, with the Conversion of
tionsinto their equivalent recurring deejpm
the converse process, i.c. the con
equivalent vulgar fractions. We do
into such @ detailed and exhaustive analytica] study
we have done in the other case but only to point
one particular principle, which will be found v
particular operation and in many subsequent on
The principle is based on the simple
=1; . 06-28_1. 999 =282_1- and so
therefore follows that all recurring decim
nines are ipso facto equal to unity;
multiplied bya multiplier in such a manner as to produce a prp-

duct consisting of only nines as its digits, the operation desird
becomes automatically complete,

(1) For instance, let us first start with the now familiar deg-
mal .076923. In order to

7. HIS:I WE nﬂw
VErsion of decima],
not, IIGWE'L’E!‘, p

ery usefuljp
es,
Proposition tha A=t
forth ad infinjyym I
als whose digits are all
and if a given decimal cag b

get 9 as the 076923
last digit, we should multiply this by 3. 13
Setting this product down .230769, we 230769
find that, in order to get 9 as the _ 076923
penultimate digit, we should add 3 to 99999§=1

the 6 already there. And, in order to get that 3, we should multi-

Ply the given multiplicand by 1, On doing this, we find that the
totals of the 1wy rows are all nines! So we stop there and argue
that, because the given decimal s 13 —~999950 (i.e. 1), therclore
the fraction shoulgd be 5. In fact, it is Iike saying 13x =1

case of 037 and see how this works:
Cre as t!u: last digit js 7, 50, in order to get 9 as
Lht?lastdlgft of the Product, we should multiply it 037

Y 1. And . down, we should add 4 to: . @7
mate digit. And, in order to 259
We should multiply the multj- 074

0599=1

Penult
£t thay 4 there,
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: ' 2. And, on doing s
JJicand DY = , g 50, we find that t :
’:,,'99 (- 1). Therefore, the fraction x 271 - leproduct 5
- :n we try the case of 142857, we find that ule:
(3) When we : » we find that multiplication
py 7 gives Us t_hc all-nine  product. .99999¢(—1)-
o T 81 - ) (=1); and therefore
(4).04761‘.'). We first multiply by 1, see 1 47619

in the penultimate place, have to add § 21

thereto, multiply by 2 for getting that 8and 047619

thus find that the required answer is 7. 095238
999999=1

(5) Similarly, we may take up various other decimals including

1e long big ones like the equi 1_1_1_ 1
i g big quivalents of 15, 33, 15, +3, 147, i

15, 3, o3 ctc., and invariably we find our purpose achieved.
(6) But, what about decimals ending in even numbers or 57
Well, no integral multiplier can possibly get us 9 as the last
digit in the product. And what we do in such a case is to divide
off by the powers of 2 and 5 involved and use 'this new method
with the final quotient thus obtained. Thus, if we have to deal
with .985714 we divide it off by 2, get .i42857
as the quotient and find that multiplication thereof ~ .2),385714

by 7 gives us the product .999999~=1.And there- 142857
fore we say: |
% XT=1., x=7%
(7) Let us now try the interesting ~ .012345679
decimal .(12345679. On applying this 81

new method, we find that multiplica- 012345679

tion by 81 gives us 1 as the product ~ .98765432
L | 0999999999=1

.e X =357

N B. 1. The student shouldv also make use of the Ekanyiina
formula. This is readily applicable in every case of «“Comple-

. . 1 1__
mentary halves” including %, 13 17> 17 €1

. . 143%999 11x13 _ 1xi3

- o 99 0
Similarly, .076923 = m%%—i——g—g—é-é—}-g; and so on.

2. Similarly, with regard to other factors t00; it goes without .
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saying thal the l‘ﬂmﬂ"r’ﬂff in H&""J"?l_: of common fEFturs from the
decimal and the denominator facrl:tat?sr and f::-:l::u.=-,j;j”;.¢5 the Worl,

3. The subsequent chapters on “au:.:llImr}r fr?“”“” and sy
sibility” etc., will expound and explain certain very simpl, , -
easy ﬁrgcgssﬂg b}f which this work of arithmetical rﬂEIﬂrfs;at]'ﬂu
can be rendered splendidly simple and easy.

4. Above all, the forthcoming “Straight Division™ methog will
not merely render the whole thing simple ﬂl’fd easy but alsp tury
it into a pleasure and delight even to the children.

SOME SALIENT POINTS AND ADDITIONAL TRAITS

Thus, the Ekadhika process forwards and backwards and th,
geometrical progression relationship between the remainderg
have given us the following three main principles:

() The quotient-complements from 9;

(if) The remainder-complements from the denominator: and
(#if) The multiplication of the Caramanka (last digit) of the
remainders by the Caramdrika (last digit) of the decimal, for
obtaining each digit of the quoticnt.

Now, apropos of and in connection with this fact, the follow-
ing few important and additional traits should also be. observed
and will be found interesting and helpful:

(1) In the case of 15, the remainders are (1), 10, 5,12, 6,3, 11,
15,17, 18/9, 14, 7, 13, 16, 8, 4,2 1and the quotient dipits are:
052631578/947368421,

() Each remainder by itself, is even and with the addition of
the denominator, if odd, is double the next remainder. This
follows from the Ekgdhika being 2.

(i) Each quotient-digit is the Jast digit of its corresponding
remainder. This is because 1 is the Jast digit of the decimal.

(2) In the case of 1=, ths remainders are (1) 10, 13, 14, 24, &

22, 17,25,18,6, 2, 0, 26, 28(19, 16, 15, 521,712 4. 11,23, 27,
9,3,and 1. P

(1) The quotient-digits are the last digits thereof for the samé
reason as above;

(i) Each remainder by itself or
minator or double of it=
(1if) Each remainder plys jt<

in conjunction with the deno-

three times its successor; and
ENCCasear s aypiame e e the  pext T

el
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mainder thercalter. Thus 10--14 = 24. 13
§=22; 4-+22-29=17; 8172 25; %
1§—29=6; 25629 =2; 184220,
on!
N.B. Note the casting off of the denominator g
(3) In the case of 3, the quotient-digits are -
¢ 112 3595 5056 1797 752 808
0887 6404 4943 8202 247 19

and the remainders are (1), 10, 11, 21, 32, 53, 85. 49, 45 5
50, 55, 16, 71, 87, 69, 67, 47, 25, 72, 8, 80, 88, 79, 78, 68, 57,
364,40, 44, 84,39, 34, 73, 18,2, 20, 22, 42, 64, 17, 81. 9
and 1. (Note the Ratio 9:1.)

The remarkable thing here is that the numerator--the first
remainder =the second remainder and that all through, the sum
of any two consecutive remainders is the next remainder there-
after! Thus 14+10=11; 104-11=21; 11+21=32: and so on to
the very end.

The general form herefor is a, d, a+d, a4-2d, 2a4-3d, 3a+5d,
54--8d etc. The student who knows this secret relationship bet-
ween each remainder and its successor can reel the 44 digits of
the answer off, at sight, by simple addition!

(4) In the case of }3, the remainders are:

(1) 10, 21, 52, 46, 65, 18, 22, 62, 67, 38, 64, 8 and 1.

The general form herefor is a, d, a+2d, 2a+5d ete. Know-
ledge of this relationship will be of splendid practical utility in
this case. Note the Ratio 8:1.

(3) In the case of 357 the remainders are:

o 10,31,34, 64, 19, 52, 37,25, 43,16, 22,13 ol,
+ 35, 67, 49, 7 and 1. Note the Ratio /:1.
The general form herefor is obviously & d, a+3d, Ja+100,

1024334 etc,

S buths cals of 59, thie cattaln (B BT i 0,
o (1) 10, 41, 56, 29, 54, 9, 31, 15, 32, 25,31‘;:9 8. 3. 30, 5, 50, 28,
i 133, 35,55, 19, 13, 12, 2, 20, 23, 53, 3 "24’ 4 40, 46, 47, 57,

127,34, 45, 37, 16, 42, 7, 11, 51, 38, 206, 25 %

36, 6 and 1, Note the Ratio 6:1. .

+24-29 _g,
+25-29-.1g,

through,

ﬁE ' '?'E:l 4’
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InpuctiveE CONCLUSION
d the cases of {5, 33, 1= ang i
L]

- examine
Having thus X =0
Aot

the following: : ,
{” [11 every €ase, We start with I the basic n”mﬂfﬂlnr

of pre-natal remainder whicl_l is perfectly justified becayse S Sy
dealing with a recurring decimal; and W call it a; © Ay
(i) In every case, the first actual remainder is 10: apq We o
it d;
(iif) And then the successive remainders are a, d, a4 3
a-3d, a+4d respectively wherein the coefficient of d i3 obviog.
the deficit of the penultimate digit from 9! iy

Thus for 5, we have a-+1d;
for 35, we have a+2d;
for 45, we have a4-3d;
for 35, we have a-+-4d; and so on.

(/v) And this relationship is maintained systematically g
through. In other words, each remainder--the next one or donbls
that or three times that etc. =the further subsequent remainder.
Arguing thus, let us try 35. As 3is 6 less than 9, ' the genera]
form should be a--6d. This means 1, 10, 61 (i.c. 9), 64 (i-e. 12).
3,30(i.e.4) and 27 (i.e. 1). And we find this to be actually
correct.

(¥) And, in case the penultimate digit is more than 9, we should
react by subtracting d and not add to it at the rate ‘of 1 for éach
§um1us. Thus, our chart will now read —a,d, a—i:i. d— (a-d)
1.e. 2d—a, and so on. For instance, for 3+, the remainders vil
be (1) 10, —9, 19, —28, 47 and 50 on,
fgpg I;f'md, over and above all these details which are different
o il e ot shoe, thr s s P
fraction we mg I::E E;Ppl{came.m all cases! 'And ﬁmﬁf me:r.
Soever can be sgf'nlﬂ Eﬂhng With 2, 4, 5, 8 orany remainder “dc;:i
Ths student will Irl']Put ininto the next place with a zero ad .

Observe that, in alf the examples dealt W

here .
inabove not only in thjs particular sub-section, €very Sti-.:
- L] P L

eciah
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e

Straight Division

__‘-_-_‘-H-"""-—--.

—

We now go on, to the long-promised Vedic
(at sight) division which is a simple and easy
Urdhva-tirvak S:jrrm which is capable of immediage application to
all cases and which we have repeatedly been describing as the
“crowning gem of all” for the very simple reason that gver and
above the universality of its application, it is the most supreme
and superlative manifestation of the Vedic ideal of the at-sight
mental-one-line method of mathematical computation.

Process of strajght
application of the

CONNECTING LINK

In order to obtain a correct idea of the background, let us go
back, very briefly to the methods which we employedin the earlier
chapters on division; and let us start with the case of 23522,
According to the first method  According to the second
under the Nikhilam etc., Sitra, method by Pardvartya for-

our chart will read as follows: mula, we say:
73:3 8 9 : 8 2: 73:3 8 9: 8 2
27: 6 21: : 133: 9-9;
28 : 98 :.Q=3534) 3B 51 —15531 a
116 406: e - o
» “and R=0J :3 7 5l: B3 2
. =l 4: 0 O
13 14 58: (2628 : 5 9
t . 534:(36)00 IS
We have felt, and still feel, that E‘:"d;}:: ,;Tmbmus an
short, intellectual and interesting metiots And hence the

i nt,
Clumsy from the idealistic Vedic ’stﬂnd!;;_':;m all such flaws and
clamant need fora method which IS fr‘;‘?c
Whih fitoq i e 2o deg] of the:-Verl
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93:2-.

And that is as follows: 3: 38

Out of the divisor 73, we put down 7 =1
only the first digit, i.e. 7 inthe divisor- hﬁ?‘ﬁ“
column and put the other digit, 1-e- 3 “on top of the flag™ by the
Diwajdnka Sitra, as shown in the chart alongside.

The entire division is to be by 7;and the procedure is ag gy,
plained below;

As one digit has been put on top, we allot one place at the rjgp,
end of the dividend to the remainder portion of the answer ang
mark it off from the digits by a vertical line.

(i) We divide 38 by 7 and get 5, as the quotient and 3 as the
remainder. We put 5 down as the first quotient-digit and just
prefix the remainder 3 up before the 9 of the dividend. In other
words, our actual second-step gross dividend is 39. From this, we
however, deduct the product of the indexed 3 and the first quo-
tient-digit S, i.e. 3x5=15. The remainder 24 is our actual net-
dividend. Tt is then divided by 7 and gives us 3 as the second
quoticnt-digit and 3 as the remainder, to be placed in their rcs-
pactive places as was done in the first step. From 38 the gross
dividend thus formed, we subtract 3 X the second quotient-digit3,
i.¢. 9, get the remainder 29 as our next actual dividend and divide
that by 7. We get 4 as the quotient and 1 as the remainder. This
means our next gross dividend is 12 from which, as before, we
deduct 3 the third quotient-digit 4, i.e. 12 and obtain 0 as the
remainder. Thus we say : Qis 534 and R is zero. And this finishes

the whole procedure; and all of it is one-line mental Arithmetic
in which all the actual division is done by the simple-digit
Divisor 7.

The Algebraical Proof hereof is very simple and is based on
the very elementary fact that all arithmetical numbers are merely
Algebraical expressions wherein x stands for ten. For instance

3x*-5x-1 is merely the algebraical general expression of which
with x standing for 10 the arithmetical value is 351.

Remembering this, let us try to understand the steps by means
of which 38 9 8 2 is sought to be divided by 73. Algebraically put
with x standing for 10, this dividend is 38x3.Lgxe1 gx-+2; and

this divisor is 7x+3. Now, let us proceed with the division in the
usual manner.
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When we Y 1o Tx-4-3)38xa

- Ox2lo.
38x* by 7x, our H8x-4-

7 “
divide S0% <t ety SR T (O B 44
first q1:||;-|:n_xnl--.{|1ut 1S w

sx2; and, in the .Iir:f.l < 24x2.1 8y

step of the I'I.'I.I.J.].EI.}‘!lII.“ 21x21.g,
cation of the divisor Cm—

py 3x% we gel the =29x.1. 2
product 35x7 - 15x% M
and this gives us the X—10
remainder 3x3-4-9x2— =10—10=0

15x3% which really means 30x2-£9x2— 15522 2452 e

being our secj:nd-s}ey dividend, we multiply the dizif::rpél;s ﬂﬁz
second quotient-digit 3x and subtract the product 21x*+9x
therefrom and thus get 3x*—x as the remainder. But this 3x® 15
really t:q}ial to 30x ﬁ:hlﬂll with—x4-2 gives us 29x-L2 as the last-
step dividend. Again multiplying the divisor by 4, we get the
product 28x+12; we subtract this 28x4-12, thereby getting x— 10
as the remainder. But x being 10, this remainder vanishes! And
there you have the whole thing in a nut-sheil.

It will be noted that the arithmetical example just hereabove
dealt with (i.e. 2233%) is merely thé arithmetical form of
I8x349x2L8x+2 and the arithmetical chart has merely shown

Tx-1-3 the above given algebraical operation in its
arithmetical shape wherein x = 10 and 3:2:-38 9 B3 2
that, whatever the algebraical work- 7o 3 3:1
ing has taken a remainder-digit over 1 33 4: 0
to the right with a zero added, the arithmetical chart shows
that particular remainder prefixed to the digit already there.

Thus, where 3x? has been counted as 30x* and ﬂfidtd b the
9x? already there and produced 39x* as the result, th{s alg;hamma;
Operation has been graphically pictured as the prefixing il'v';;::::ll
and making it 39! And similarly, in the next step % Lh:: ;'l::‘ﬂ: to
the remainder 3 is prefixed to the 8 already there; an Te 2 gives
deal with 38: and similarly, at least, the ! prefixed tnt e =g
Us 12 which the 34 subtracted i:hf:l.*E*l":'r;:rrllﬂ “ﬂg'::,d.sﬂil;z with 10

In other words the givﬂn.gxpr{::&smn 38x E;E_j :,,.L:Hf-l-ﬂ-‘: 12,
i“hftituttd for x is actually the same a3
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a 2.0

Eﬂx’ﬁji; S22 +35;;—1—:;Tx+12 =R Ary, Ang

graphically, this algf:brai_cﬂl operation 3:38 ¢ 2.

is demonstrated arithmetically in the § ¥ w3

manner shown in the margin. : ]
_:_-E-TT:‘-‘E
- ¢

The procedure is very simple and needs no further €Xposition
and explanation. A few more illustrative instances with Tunpiy
comments, as usual will however, be found useful and helpfy)
and are therefore given below:

{1) Divide 529 by 23. 3: 5 2.9
The procedure is exactly the sameand js 2 - I 9
simple-and easy. 2 3:%

{2) Divide 4096 by 64. (3) Divide 16384 by 128

4: 40 9 : 6 8:16 3 8: 4
6 4 S 12 : 4 11 :6
g 4 : 0; :1 2 8B:0
{4) Divide 7632 by 94
(if) New Nikhilarir method or (if) Newest Vedic method
94:7 6 :3 2 ; 4:76 3: 2.
06 : 0 :42 . g - : : o Q=8
: : 036 : 81 :18: R=I8
2 16 @ 4 88:
H 81 : 1% .

(3) Divide 601325 by 76.
Here, in the first division by 7, we can G:60 1 3 2: 3
put § down as the first quotient-digit; 7 - 116 2 i,
but the remainder then Ieft will be o g 1y 13
too small for the subtraction expected at

the next step, 50, we take 7 ag the quotient-digit and prefix the
remainder 11 to the next dividend-digit, N B. For purposes of
reference and verification, it will be 4 good plan to underline such
4 quotient-digit because the chart ofters jreer for verilication
4t every step and any reconsideration necessary at any stage

need nnt‘inmlve ourgoing back to the beginning and starting the
whole thing over again.
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(6 pivide 3100 by 25, 3:3 ] 0: 0
2 ; S 2
' 2 4 : q.
Nate—In algebraic terminology, 3100 - 3% xte 21 gy 1 8x

20 and the above exampleis the arithmstjcal way of stati
that 2x°+9x%y +-8xy*+29y" = (2x+5y) (x2+2xy+-da?) (i.e. z;::f
Similar is the case with regard to the division of 38y

/ +-9x®
+8x+2 by (x— 1), wherein Q =38x2+4-47x}-55 and R 57,

(8) Divide 695432 by 57. (9) Divide 3279421 by 53.
7:69543: 2 3:327942: |-
5 :1210 :3 5 : 2465 :6 :
122003 32 ¢ : 61875:46:
(10) Divide 7777777 by 38 (11) Divide 500001 by 89.
- iy e S T - 2:500 00;: 1
3213 T8 £F 8 : 1078 :15
20467 8:13: :5 617 :88
(12) Divide 37941 by 47. (13) Divide 745623 by 79
7:37 9 4 1: 9: T4 5 6 2:3:
4 + 5 3 16 3 1 3 116 9 :9:
: 8 0 7:12: : 94 3 8:21:
(14) Divide 7453 by 79 (to 3 (15) Divide TI{I.{}H by 39 (to 3
places of decimals) places of decimals)
9:74 5 3.0 0 : Sl L Dl LB s
7: 1166 50: 3: 4 82 26 4:
. 94 3 422 11 82039 &
‘v 3 by 53 (tod
(16) Divide 220 by 52 (to 3 (17) Divide 73 B ¢
places of decima 5)
places of decimals) 3: 7.3 000 0:
2: 2.270:,0:0. 0 G 45 64 4.1
58 - it 1L A ; T

-0. 3??3
4,230 B —_—
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s 171 by 83 (to 5 places of decimals)
{Ig]]jlﬂdﬂ? :,.r3: 1 00 0 0:;

g : 76 5 3
0 .85 5 4 2.

(19) Divide 1337 by 79
(i) By the New Nikhilam () By the newey v,
mﬂﬂlﬂ'd rﬂElhﬂﬂ "
E:H:g ?*: _9:133:.;*
7 2:1 - £ 6 12,
. +10 5 : ___I__rj-_-'ﬁ'“
¢ 1%+ 1 :92:
=5 -
16 : I 4. 28
(20) Divide 1681 by 41.
1:16 8 1.2 N.B.: The Algebraical form is-
4 : 0 0 = 16x2-1-8x+-1
4 1 0: dx+1 =]

(21) Divide 115491 by 137.
T2 115 4 9 : 1 :
13 : 11 6 : 2
8 4 3 .0 :
or in Algebraical form:

I3x+7 : 115x2 +-4x24-9x - 1(8x2+dx+3
: 1043 4-56x2

- 11x%— 52x2-4-9x = 58x2-+-9x
S E=104x31108x2-167x-+-21 52x*+28%

—-—'-_-'--
6x2— 19x+]

-'.Q23x3+4x+3 541.‘[‘1‘]
(e, 843) & R —0 ) a2

e Eﬂl;q




(22) Divide 7438 by 127 (to (23 pjyjq, 35, by

3 places of decimals) by 127 (to 3
?]?74 5 80000 ‘“““;*Wfdcmmnls}
12 : 14 148784 1 331 7 90
23 11 13 16 10 13
- 5 8.7244, .,
27.6 9 29,
(24) Divide 7031985 by 823

Here, the divisor is of 3 23:70 3 1 9.

digits. All the differecnce 8§ 85

1gI1S. ; : ’ G 5 1443 -
which this makes to us is - 85 e
that, instead of putting one
extra digit on top, we put both the extra digits 23 there; and we
adopt a slightly different modus operandi on the Ordhva-tiryak
lines in respect of the subtraction-portion of the work.

In this instance, we divide 70 by 8 and set 8 and 6 down in
their proper places as usual. Thus, our second gross dividend is
now 63. From that, we subtract 16 the product of the first of the
flag-digits, i.e. 2 and the first quotient-digit, i.e. § and get the
remainder 63 — 16 =47 as the actual dividend, And, dividingit by
8. we have 5 and 7 as Q and R respectively and put them down
at their proper places. So now, our gross dividend is 71; and we
deduct, by the Urdhva-Tiryak rule, the cross-products of the twr::
flag-digits 23, and the two quotient-digits 8, 5, Le. lt]-[—l'i-'l—-%*i.
and our remainder is 71— 34=37. We then continu¢ 1:;::-5 iirlfie
again by 8 and subtract etc., in Lhe ;ﬁnﬁ;;:;ﬂ;;yﬁ Cr::]ﬂthﬂd Y
plication as just now explained by the 3 ihat finishes the
til the last digit of the dividend is reached. An

task. : L number of

And, in other divisions 00 lrrEgpcﬂtl‘l’fh;i t:::;d, in every
digits in the divisor, we follow the same ;mﬁr at the most, a small
case, our actual divisor 18 of one digit ony

i a ily divide
two-digit one like 12, 16 and 5000 which ;:iﬂsﬂ:ﬂ:;ﬂ;]!fmd o8
by. And all the rest of the digits of the ¢

"Stfﬂight Di'lri'
the flag-top. And this is the whole

7
a4

: ¥ < 1ent :"ﬂu
sion” formula. 1 q the gquotient, J=
i aces 1 In this
I f the decimal P’ | way.
Note: H‘msr..ﬁad 0 fave it in the usua hich when
Want the remainder, you can e us 20,

| =S i
- case, 23 and 44 by crﬂss-m‘-ﬂnyhmﬂﬂn,; Eihﬁ Jast 28"

:. - 1'.'1'!;-.:..... a - 2% . & _T. k5 oammaTd EDD: E'ud 3 ::{
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last ebtained quotient-digit =12, Subtracy;,

8 th
two, i.c. 212 from 485, we have R==2-J.~3: : € togy

73 S Raggs o e
= 2 y 4. # Ty l
Some more instances of division by three-gjgi i 2
are cited below!: 15ig “
[]} Divide 1064321 h}' 743 {h} [2} Di\-’idﬁ 2291 ;
4 places of decimals) 3 places of de I:'E] 3,
T :+ 34457765 ; 1 . 133533:
143245643

SR=521—170—6—345
(3) Divide 888 by 672 (to 3 places of decimals)

72:8 8800 : or 32: § . g .3
6 : 23342; T 2 :1 :
:1 3215 1 :Re=21§.

or by mere Vilokanarit (Inspection) k>

(4) 28:63818:2 17 or 3:63818: 2 1.
3 1165 : : 5 : 1045:4 12

12086 :R=419:

12086 :R=419:

(5) Divide 13579 by 975 (6) Divide 513579 by 930
5:13.5: 79. W51 3 §5: 71N
. I S P £ 9 « §12 14
:1 3 : : 54 6

R=1179-260—15-904
(7) Divide 7143 by 1171

(7} By the new Paravare Vi (,','] By the new Paravarfys
method

R = 1479~ 540 54 =8

(Vinculum) miﬂmit 3
1171 7. y o F
B ey P 1 o a9

 9]-T1"
=747 T T1: : _-I#I;j—-"f:
i 645 42 -gqaa] sq 1T
7:-10-5-_73 - S i

2} B
6 117 - _'IE_____I__.-IH-""'#
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(iif) By the newest Vedie methog

T:7l: 4 3: - Q=g
: 51 :_-'::md R=543-—425=H?
:6: 1 0:

—

11

}Divid-:: 4213 by 1234 (to 4

(9) Divide 467
places of decimals) 81 by 1483 (to

3 places of dec
34:42: 1 3 0 0 0 33:4;‘::;‘“?31? :
12 : ::6 4 7 3 2 4 49 It is 3
:3:4 1410 3:1.5 45

(10) Divide 3124 by 1532 (to 3

(L1) Divide 333333 by 1782
places of decimals)

(to 3 placesof decimals)

32:31: 2 4 0 82:33: 3 333
15 ¢ 1 60 17 : :@6198 11
-2: 0 4 0 : 1:8 7 056

(12) Divide 46315 by 1054 (to (13) Divide 75313579 by 1213

3 places of decimals). {3:-75:31 3 5 : 7
s4:46: 31 5 0 2 0 A3inigu
m : :61310 8 - 6 20 8 8
- 4: 39 4 2 R=1179-344 =833

R=1315—310—12=993

(14) Divide 135791 by 1245 (15) Dividf:ll;;’ifg t;}; 1616
45:13 5 7:91 .5“5: :T
12 : 11l 8 1 R-L
R

I = oy s '|_
R — 491 — 405 or 130— 44 =86 R .. 779 128 or 690—39=65
(16) Divide 135791 by 1632

12:135 7+ A
165 § 5
3 3
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(17) Divide 97531 by 1627

27+87 5: 3l or 27 : 97
16 @ 17 21 16 ]5."334
« 5 0 ;__{-;_-_-I:-I‘"""---..
R —2131— 593 and R 337
1538 (5 Onse 20
1.0 Q:j‘l-_} Hﬂd R_Ji‘ag
(18) Divide 97531 by 1818 A
I8 :97 5: 31
18 :: T :16
vy & 2 R=1631—4
54 {ﬂr IE&D-—EE}.:!”?
(19) Divide 13579 by 2145
45 :135: 79
2] =2 : 9
6:  AndR=979—270 or 930221 = 709
(20) Divide 135791 hy 2525
25:135 7: 91
25 10 :22 And R =2291 ~325 or 1980—14
b = 1966
(21) Divide 5011 by 439 (to three places of decimals).
V:50110: 41 :50 :.110 : R=19§=182
4 1336 : oar 4 :1:.222:0r311=-12
+ 11 .415 : +11 : 415;: =18
(22) Divide 1561 by 349 (to three places of decimals)-
49:15 6 1 0 5T:15.610:
3 : 38 810 or 3 -+ 344
: 4.475 277 ;4 47277
And R =361 - 196 And R =361 196=165
or 200— 35 = 165
23 N
(23) Divide 47 by 793 (to five places of decimals).
98:.4700 ¢ o 02:.4 7 0 0 00
A 121915 o 8 2 4T 6 64
e » _______________..--"'
i .058 9 g 05 8 83

T —— e T —




AL

Ly Divide 1111 by 839 24
‘.F-

) RS 5 S A -
- » 3 4 or
L1 3 7 Bymerep
“’Uf.;ﬂ”u‘l. :
And R+311-39-.272 " {]HEFL‘cImn‘j

we now extend the jurisdiction of e Siitra
divisors consisting of a large number of digits ‘]"Td '"'L_I*F{F it to
volved being lhﬂ: same, the procedure ;s ik i'l-:-[Et'lt?E: Filirlncl.ph: in-
55 in the foregoing examples. And the division by ; lg'lhlu silme
or a small two-digit divisor continues exactly the single djgit
illustrative instances are given hereunder: o Slen

(1) Divide 7031.95 by 8231 (2) Divide 995 311 by 16123

(to 5 decimal places). 123:99 5. 3 1 1
231:70 319500 16 : 3 .13
§ : 675463 61
. 854 32 R=13311— 1503 (or 12000105
15)=11808

(3) Divide 975 311 by 16321
231:97 5:3 1 1
16 I
6 0 :R=1500-+50+1 or 3311 - 1860 = 14351

(4) Divide 975 311 by 16 333

333:97 5 : 3 1 1
16 - 17 : 16 R =16311—4627=11664

: 5 0 or 121004310126 = 11664

(5) Divide 975 311 by 18123
123:97 5: 311
+ 7 :16

5.3

13

¥ R = 150003008
(or 16311~ 1519)=14792

(6) Divide 995311 by 20321
321: 99 5 : 31l

20 : 19 23 _q(=23311-
AT LT s | 0190702
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(7) Divide 997531 by 30321
321 : 99 7 3531
: 32 (or 23531—-13;1}&2?159

(8) Divide 137294 by 5749 (to 6 places of decimalg),
749 :137: 2 9 4 0 0 0
5 + 3 :81313 1414 8

23 8 81371

or
351 :137. 2 940 00
6 + 33 2 5 38

: 23 . B8 1371

(2) Divide 53247 by 4999 (to five places ol decimals).
999 : 53. 2 4 7 0 0 O
4 14 9111412 9

S

;10 6 515 3

or
0 :5 3.2 4 70 0 0
5 : 0 3 202710 N.B. Better to divide

;106 -5 1 5 3 ... by 50

(10) Divide 138462 by 39898 (to 3 placas of decimals).
9838 :13: 8 4 6 2 0 O
3 4 9 13 14 17 21

134 70 93

—

ar
010Z : 13: 8 4 ¢ 2 -

4 R i S TR

o 40
¥ 3 4.7 03 : N.B. Bettter dividz by




HPGIERT L VIsion
by 19799 3 b
- ide 131 by (to 5 places of deg;
(P59 : 13 1 0 0 0 B
g X At 18

00 6 6 1 6...

or
ool : 1 3 1000
2 : 1 11

00 6 616 N.H.Bﬂﬁermdiﬁdehyzﬂ

(12) Divide 76432 by 67998 (to 5 places of decimals).
7998: 7 6 4 3 2 0
6 i 1 3 6 7 9 10

1.12 4 0 3

or
3002 : 7 6 4 3 2 0 0
7 - 01 2 6 718

1. T 2 4 @ :3..

(13) Divide 2537 by 48329
8320 +2 53 70 or 9331 : 2 5 3 7 00
4 : 25 5 1016 5 « 20 31
05249 -0 52 49...

(14) Divide 371628.112 by 12734 (to 5 decimal places)-

2734 : 371628. 112
l .14 87 11 8128111111

:29.1839 25868

N.B. Betier
divide by 12

or

334 137 1 6 2 8 112 ﬂﬂﬂﬁ
1 i
- 11 0734 31 S8R0

55 3.8 3 aniht
N.B. Here we have divided by 13.
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(15) Divide 41326 by 31046 (to 5 decimal Places).
1046 :4 1 3 2 6 0 0 1052:4 1 3,
11124 o3 ;1111510
1

(1.3 311 2... 133715

(16) Divide 20014 by 137608 (to 5 decimal places).
37608 : 200140 or 42412 : 2 0 o

3

1
1 : 13689 1 1 2 1040
:.14544.., .l 4 5 44,
N.B. Better divide by 13

(17) Divide .0034147 by 81.4256321 (to 6 decimal places).
14256321: 0 0 3 4 1 4 7

8 32935
:0 000 419 ...

N.B. The Vinculum method is always available but will

not make much difference. In fact, it may prove
stiffer.

(18)_Divide .200103761 by 93.71836211 (to 5 decimal places).
371836211:.2 0 0 1 0 3 7 6 1

9 25 7 17

: 0 2 1 35

(19) Divide 74. 5129 by 9.314
314:74. 5 1 2 9 0 0 0 0
9 : 21309999

:8. 000 09 6 6

(20) Divide 71324 by 23145

3145 : 7 : 1 3 2 4 or 145:71 : 3 2 4
2 : 1 2 4 4 23 : :2 20 618

:3:08 1... :3: 0 8 1
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vide 137426 by 743.2%1.2
@ XR00 (10 4 places o
432 :13 7: 4 26 0 ¢ ¢ decimalg),
7 : 6 711175 4 g
42 :184 : 9111 o
12 1 612 15 15 T11
004 : 14 8 8 817
g 6 4 0 49
L. 86 0009

=1, 86 01 (approximately)
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Auxiliary Fractions

—

[n our exposition of vulgar fractions and dec;
n Emm "

have so far hE:EEl making use of processes wmchﬂi:]fﬂchm!s, we

the exact results in each case. And, in so doing, we h P 10 give us

generally followed the current system ave hitherto

L whereh P
and divisions by powers of ten are mﬁﬂhauimu}.}r ﬂ?:igﬂh?uﬂzs
simple device of putting the decimal point backwards or fﬂn{ralrdz

as the case may be.

CONVENTIONAL METHOD
For instance, we manipulate the decimal point thus:
1 .01, 39 - 39 X7 .17
W=7 Pr=7 Om- 5
3741 3741 97654 0097654
@ Trg000 = 11— 2™ © gy000000 ~ 9
But after this has been done, the other operations—of actual
division etc.—have had to be carried out in the usual manner.

AUXILIARY FRACTIONS

There are certain Vedic processes, however, by which, with the
aid of what we call sahayaks (auxiliary) fractions, the burden of
the subsequent operations is also considerably lightened and the

work is splendidly facilitated.

FirsT TYPE :
. - as
application of our self-same old friend the Ekdahi

ipator ¥ its
the whole modus operandi is 10 replace .I.hn dzgi?;n;gnult[mﬂw
Ekdhika, i.e. to drop the last digit and Inere
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one by 1and make a consequential alteratioy
rocedure as in the case of other Ekadhika ope Fliops i,
ALB.: The student will rcn:u:fnrlmr Itﬁm} in these e s
remainder at each step of a a:%ﬁ'lsmn is NOt prefixeg m“{:ﬂlmml i
zoroes from the right-hand side, but to each Quotient.g; Serieg n:*
_ AUXILIARY FRACTIONS (ALF.) (Finsy Tyer) &it,
(1) for 17, the Auxiliary fraction is %
o Ao ()52631578/94736842 ]
(2) for 47, the AF. is §
5 33 =1(AF) =.03448275862068/96551 72413793 i
(3) for 3% AF is 3.7/6
[4] for f'g,-,. AF is ‘“E:i
(5) for ;3. AFis 52
(6) for tiz, AF is 33
(7) for 7357 AF is &}
(8) for 15, AF=422
(9) for v45%, AF =245
(10) for i35, AF 15 2312
(11) for gf337, AF is 2-4332
(12) for y5i85, AF is 2358
(1 3} for ﬁﬁ"ﬁ'i, AF 15 _E'ﬂ.‘?:‘ﬂ.i
(14) for ragwisse, AF=2-200301
(15) for 75333559, AF =2-0002128
(16) for $3883, AF — 2-15832
In the above cases, the first eight denominators endina singt
nine; the remaining eight terminate in 2, 3, 4, 3, 4, 6, 7 and 4
nines respectively. The question now is: ‘Does it stand to rfnsnn
that the Ekadhika should be the same in 535 and in zass I

pective of the difference in the number uf? :l;nr:s? That woult h:
tantamount to declaring that the same significant ﬂumﬂam-r';ﬂ
dividend with two different denominators or divisors s
th::y same quotient! And that would be palpably absurd! )
5 H:.:.-z,u the ﬂhjc_t::ti::.m is perfectly valid; and the relevant SHI.EF'?"“‘F;
nted this difficulty beforehand, by providing . S

of quotient-digits 1o which the remainder at each stage?
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P hould be fixed !
mental division s prefixed! And that
pmmnmh solves the whale

MoODUS OPERAND]

For instance, let us take the sixteenth exg
: H%ﬁ whose A.F. is 21222 and whose deng
mines:

Here, Fis §3505; and AF is 21883, g4 oo pave to make 5 §
fien of 49999 our working divisor. As we have dropped 4 nin::
from the original denominator and have 5 as our Ekadhike in
the denominator of the auxiliary fraction, we have to divide the
numerator of the latter in bundles, so to say, of 4 digits each by
5; and, whatever remainder there is, has to be prefixed not to any
particular quotient-digit but to the bundle just already reached.

Thus, we take up 2.1863 to start with and divide it by 5.

We get 5) 2.1863
4372 as the first | Q=.4372 and R=3

quotient-group and 3 as the remainder. We prefix this remainder
to that group and say:
4372 and we divide this dividend, namely, 34372

rnjple supra, namely,
minator ends in four

3 by the same divisor 5; and we get:
4372 : 6874 | 5374
3 =2 4

i.e. 6874 is the second quotient-group; and 2 18 the Iscc::md ;e-
mainder, which therefore we prefix to the second 'il"“h:: nﬁ p-
And we continue this process with as many groups as :

974 and so on
Thus we have: A372, GET4, 5374, 4

3 4 of deci-
to any number, or tens, Or hundreds or thousands et

mal places!
The proof hereof is very simple:
0001 : 2.1863 000
5 . 1313432

T 43726874
. . 4372 G874, 5374, 9074 -
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N.B.: The prefixed n:muimlu.:rs..urc not parts of e
put only prefixes 1o the quotient-group in Questio, Qumih[t
therefore to be dropped out of the answer! a4 g,
This is a simple method by which we avojd djy; i
big divisors and have small and casy denominators 14
The student will note that division by big denominatgy,
continuous series of zeroes on the right-hand side gy, d d}lﬂ-“}
by the Ekadhika with the prefixing of the remainder g Eachm“
yield the same result! And this i1s why the auxilig
scheme has been incorporated for lightening the by,
big divisions.
A few more examples are given below:

nsg Iy
llEl'll 1""“]]“

'Y fractioy
den of long

(1) Express 2 in its decimal shape.

29
6 b
Here, F = ﬁ.'.f’h-F- e
o F =.20689655172413 }
T9310344827585
71 7.1
(@) F= g5, AF=5 F=.79775280898 etc.

17 1.7 5 F=.12230215827 ...
3) F = ___l'-‘é‘ = e

O F= 5. AF=g7 33403

9

98
4 F= = . AF = 75 - F=.54748603351955... .

Fn 33
(3) F= 43~ 135 - AF = 3 - F=.023255813953488. .

13"
(6) F=17/43=51/129 - .au::%_; F—.395 348 837209
_18_ s
(DF= 73~ 555 & AF = %2_4 F —.246 57534 .+
E —— 53 ® . gn®
O F~355 . AF = i; F=.06 63 32 91 61 4518
§.3 7 A& L2

= H d n}w:l'
ﬂnirfﬂé IGE;E ubper row .06633291614518 . . - is ﬂ::‘*ﬂj ot
Qut. tones527431,..isa mere scaffolding



Auxiliary Fraction,

. a5
) Fe '*-.1'-‘-:;-' *, AF = 1_; F=01 66 §5 21 59
4 5 67 1549
(O F~ g+ AF =1 F=0011 4 247,
o 300 *2131s g

(10 F = 3357 g5~ -« AF<3 . Fa291 84 5493 5 9
6 5363 2

L
5
44 444
{_I::I F= m—g.'. AF =="T4—-_', F= 031 716 551 182...
10 7 2 3
97017 0097017

(13) F= 55550095 ++ AF=——3
F— 0032339/0010779/6670259 ctc.
0 2 2

The student will have noted that the denominators in all the
zhove cases ended in 9 or 3 which could be so multiplicd as to
vield an easy multiple ending in 9. But what about those ending
in 1 which would have to be multiplied by 9 for this purpose and
would, therefore, as already pointed out in the chapter on recur-
ring decimals vield a rather unmanageable Ekddhika? Ts there
2=y provision for this kind of fractions? ,

"f;i, thara is. And this takes us on to the $2¢0 nd typs of auxi-
Ezry fractions.

AUXILIARY FRACTIONS (SECOND TYPE)
ng in 1, drop the 1 aui
s the required second typ?

‘24 when F has a denominator endir
€s2rzzss the numerator by unity. This!
<fzuziliary fractions. Thus,

(1) for 3/61, AF =2[{60="%

(2) for 36761, AF =35/60=3.5/6
(3) for 28/71, AF=27/70=2.7/1

(4) for 73191, AF =72/90 =7:2

(5) for 21121, AF =1/120=-1/12
€) for 147131, AF=13/130~ 134
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(7) for 1/301, AF =0/300 =.00/3

(8) for 1901, AF =0/900 =.00/9

(9) for 172/1301, AF =171/1300 =173
(10) for 2743/7001, AF =2742/7000 =2.742/7
(11) for 61638001, AF =6162/8000 =g, 1628
(12) for 1768/9001, AF =1767/9000 - 1.767/9
(13) for 56/16001, AF =55/16000 = 055/16
(14) for 50/700001, AF =49/700000 =.00049/7
(15) for 2175/80000001, AF -—-21?4;'Emﬂﬂllfl]ﬂ==+ﬂﬂnzur4m :
(16) for 1/200000001, AF =0/900000000 =.0000000079

Mobus OPERANDI

The principles, the prefixing to the individual Quotient.gigy,
or to groups of quotient-digits etc., and other detals are thy
same as in the Ekadhika auxiliary fraction. But the Procedurg s
different, in a very important nay, vital particular. And thi ;;
that after the first division or group-division is over we prefix thy
remaider not to each quotient-digit but to jts complement from
nine and carry on the division in this way all through.
An illustrative instance will clari fy this:
13 12 1.2
Lﬂt F hE 3_]-... ﬂF=ﬁ=ﬂ' —3—
(f) We divide 1.2 by 3 and set 4 down as the first quotieat:
digit and 0 as the first remainder. 1}'4

(i) We then divide not 04 but 05 the complement of 4 fn:l-ml:;
by 3 and put 1 and 2 as the second quotient-digit and t
second remainder respectively. Therefore we hﬂvﬂd“ 21

(#1) We take now, not 21 but 28 as our dividend, divide it % 3
and get 419
0 21
(#) Thus, dividing 10 by 3, we have: 4 19 3
9 0.2 1 land

50 on, until finally our chart reads:
Flie.d9)= 419354838709 6e¢tc.
0211121220222
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Always: therefore, remember to take the complemens fro
h qﬂﬂtiﬂﬂt-dlglt‘ﬂrﬁii not the quﬂtiﬂnt"dig:[t itself ;:ll 9 of
i of further division, subtraction or the

ete. Thic
fﬁﬂrﬂt of the second type of auxiliary fractjon, 15 15 the whole

gome mgrc_i}lustratiw: cxamples are given hereunder:
I L
WF=gr AF =%

+ F=.02439/0 } So, thisis a definite recurring
01130/0 decimal,

+ F=.98591549295774647887323...
64613362645534356652126

91 0.0~ F=.532 16 374 2 6
7" 17 5321061274 1115

10 30 ,. 29..370/3 Evidentlya recurring
A= 2 Tk AF B 5025 decimal.

131, . L.30 (with groups of 2 digits)
{5} F_ m . -I"J'BI" -?—

s F=.18687589 1583...
456 15 3

1400 13.99 (with two-digit groups)

O F= 51 ~AF=T3

F. =.99 92 86 22 4l
13 12 3 5 3

F 243 2,42 (with groups of two digits)
{?} EIEI_H " HF =-—1-6— - El Tg-+.
sF=15 17 80 13 741 “13 4
212 2 H I

; £ two digits)
14 (with groups @
{3} F= S I 5 . = _"!'.I_- ':

() F= == AF-

| B8]

——

61 201 ** 2
& F=.07 46 26 86 56
006 1 11
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2743, . 2.742 (with 3-digit Eroupg
(%) F= =501+ AF / }

~ F=.39]1 801 171 261 248 393 086
s 1 1 1 2 0 4

Proof: 001 :2. 742 939
7 : 5

+ . 530]

3 9 e B2
(10) F= == 537 . AF =7 ..F—ﬂiﬂzfsg‘r

31 403 | 402 (with three-digit groy
= e e . PS
ar F L] = IU'GI_ U 1 :I

». F=.402/597 (evidently a recurring decimal)

29 028 (with three-digit groups)
(1) F= 155y~ AF=—2—

o F= 001 933 204 453 036 ete.
13 3 6 0 6

__ 137 : _ 000136 (with 6-digit groups)
(LE 13600001 ~AF= 13
< F=.000010: 538460 727810: 713245 etc.
6 9 :0 -4

OTHER ASTOUNDING APPLICATIONS

Yes, but what about still other numbers which are neither
immediately below nor immediately above a ten-power base or &
multiple of ten etc., as in the above cases but a bit remoter there
from? Well, these too have been grandly catered for, in the sha*
of a simple application of the dnuriipya Siitra, whereby, after
pre-fixing of each remainder to the quotient-digit in question, ™
have to add to or subtract from the dividend at every StP ﬂ!r
many times the quotient-digit as the divisor, i.e- the dmﬂmnam:
is below orabove the normal which, jn the case of 4l &
auxiliary fractions, s counted as endi;E not in zero or & MV
of zeroes but in 9 or 4 series of nines! i
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For example, let F ]_:.e, 3% and suppose i 4 263
(his vulgar fraction in its decimal shape ¢4 m;’aw_fﬁm express
» %y 10 places of

im Is. 1
deﬁ h | dl"n{ El[ GUI 1‘13"-"13, i“ th O =
ok [I i C l.]l'EE'. 'ﬂf' thEEE [.:IEFE—E“I

jons into such very Eimple and e
n;:ten the tremendous difference hethr’;ur:‘;;-h;ia of work, for-
he Vedic method and thereby deprived himself Lﬂfnt?tethnd and
material for the purpose of comparison and contry : : requisite
q briel while, picture the two methods to ourselv. a8 , et us, I_'::l-r
ond see what the exact position is. ¢s side by side

According to the Vedic method, the process
* wh 1
s olly mental is
F =1_§. o, A.F. ;2 But 68 being one less than 69 the normal
ending in 9 we shall have to add to each dividend, the quotient-
digit in question. Thus

(i) when we divide 1.5 by 7, we get 2 and | 1.5
as our first quotient-digit .
and our first remainder. )

1

(if) our second dividend will not be 12 but
1242 = 14: and by division of that by 1
7. our second Q and R are 2 and 0. 10

(if) our next dividend is 02+2=04; and 220
this gives us 0 and 4 as Q and R. 1 04
(i¥) our fourth dividend is 400, giving us 1-2{}14 ﬂ55

5 and 5 as our fourth Q and R.

o ) 5 60 22058
(v) So, our next dividend is 35+ 10454

and our Q and R are 8 and 4.

&5 of ﬂﬂﬂimﬂlﬁ
n 16 dﬂl:imal'
digit mentally

We can proceed on these lines t0 a3 many pla::l
43 we may need. And, in the present case wherel

places have been asked for, we toss Off digit after
and say .

Fo2205882352941176¢€
1ﬂ454ﬂ23151n1532
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¢ this, Jet us remind ourselves of the gy

this question: “fntmm_‘hi
68)15.0(:2205882352041176 etc.

136
140
136

400
340

Over agains
for answering

240

204
360
340

200
136

640
612

280
272

&0
68

120
68

520

476
Sl
408

Alongside of this cumbrous 16-step process, let us 0% %
put down the whole working by the Vedic method and 52y

F(E8=.220588235294 117 6 4¢ic
1 0454023161015324
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illustrative exampl] A
A few more 1 Ve Ples are given .
(1) Express 101/138 in its decimal ghs pe {mmtr'

(i) Routine Methad:

138)101.0(.43 188405797101449275
966

| —

440
414
260
138
1220
1104
1160
1104
360
352
800
690
1100
966
1340
1242
980
966

140
138
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(i) Vedie Method:

W

AF. =28 pwith one below the normg] g 19)

iF.__?leE‘I’ﬂS TE}TI
321210408 1012200246 ¢

0
122 ]éﬁ?ﬂet,;_

Note: More-than-one-digit quotient if any, shoulq 1, 4
over (as usual) to the left. & ity
(2) (i) Conventional method:
97)73.0(.75257731958762886597 ete.
67
510
485
250 740
194 679
560 610
485 582
_'IE 280
679 194
_'?E 860
679 776
310 840
291 776
180 640
1 582
930 E
873 485
570 050
o 873
850 _?;J’E
776 679
91

(31} Vedie at-sight method

Data: F_1a . !
3 77 2 AF =23 (bt with

":iffHﬂlr H”ﬂr}i—fﬂg:

5 below the notmal ¥

“» Add twice the Q-digit at each step-

37525773 1958762886597 ¢

315653

119375418644857
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(3) Express 4% as a decimal (20 places).

fj} Current method—

127)17.0(- 13385826771653543306 ctc.

127
430
381
400)
351
1090
1016
740
635
1050
1016
340
254
860 450
762 381
980 -E;E
2RO 635
910 550
889 08
210 420
127 381
830 390
000
B
Rl 18

(if) Vedic at-sight method—

¥ 1 mal 129)
S F=dl.: AF=%} (but with2 below e e

% S XVEr
“.Double the Q-digit to be gdded 9FCY 4:{3 3 0 6ete

: 5
“Fe,13 385826771653
¢41u59123?0353‘5433u912
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[

{'I} I_:‘IHI-II':'*:" TR III’ *!‘Pfi"".‘lf r":ljjit

(1) Usual method:

) LAY "'!'L- Aol r".r::ln‘r-l‘l"f:t‘

(21 Hecimgg Plage

8997)5236.0¢.581/971[768/367(233/522 120 6 &
L

4085
TR
71976

17740
84907

87430

80973
64570
62979

13910
8997

69130
62979

61510
53982

75280
71976

33040

26991
60490
33982

—_—

635080
62979

e S

(if) Vedic at-sight method:
s AF= 523‘5 (but with 2 below the pormal

. po 5236
8997 - 5

21010

What
dous g romen,

mess of . "*’]“5!
Dlu:atm,-, Ul

17994 tra::lmns tic.|

30160
26991

31690
26991

46990
44085

20050
17994

20560
17994

25660
17994
76660
71976
46840
44985

e ——e

1855

8999 and also with groups
3 digits at a time).

..I‘!!Ldﬂ Lwi
581 ice the

Q'dlmt at eve

49?1 : 35? 233

ry step.

522 :

285 et
1

o — e 8
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(5) Express 5097 as a decimal
(i) Conventional method:

269

(16 places)

10997)21863.0(.4372/8623/71
Fo0ogs A OB{TITA2304et,

186420

149991
364290
349979

143110
99994

431160
399976

311840
299982

118580
99994

185860
149991

358690
349979

87110
49997
371130
349979

211510
199998
i
115120
99994
2 e
151260
149991
s
126900
99994
= S
26906

—

What a horrible
mess 7
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(if) Vedic at-sight method:
21863 2, 1863
PR o a o AR
< F = 5997 5
(with 2 below the normal 499

99 angd with i
4

four digits each). "
. Add double the Q-digit at every step) of
62 71 4 ) s
- F=4372:8512)3: 611y 73: 5
3 :1 : 4 ( ! 4 (12) 2(I0y3

N.B.: Very carefully that the extra or surplus, j.e, Jup
side parts of Q-digits have been “carried over” o the Tofy *hagy
This excess is due to the additional multiplication am.i
got over in the manner just indicated. A method for wiid F:ﬂnhf
difficulty altogether is also available but will be dealt Withga?:

later stage.
(6) Express 4§ as a decimal (eight places)
(i) Current method:

76)17.0(.22368421 ete.
152

——

180
152 N.B.:Note 84 : 21 == 4 -1,

280
228

— .

320
456

ggg Even this is bad enough.

320
304
160

152

ol s



Auxifiary Fractions

(i) Vedic at-sight method I”
* Fodd & AF=%7 (but with 31
L - ] ] ¢

S1cite thE GAIHE 1845 beadde) 55 than the NOrmal 79)

« F-+.22368421 e, Levery step,
12440000
(7) Express 45048 as a decimal (12 plages)
(i) Usual method:

59998)17125.0(.2854/2618/0872
119996

512540
479984

325560
299990

255700
239992

157080
119996

370840
359988

108520
59995

485220
479984

523600
479984

———-_-_-_.

436160
419986

._-_-_-_.'_-

161740
119996

R
41744
Pt
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. o at-sizht method:
(i) F‘*ﬂdm;ﬂ Eg . AF— 1.7125 (With 1 less the
o F = %5998 *° TG and with 4"digit ;;”mt
+ only one Q-digit is to be added. Ups)
. F=.2854:2618: 0872 etc.
. 1 () i :

These examples should suffice to bring vividly home 0 the
student the extent and magnitude of the difference between the
current cumbrous methods and the Vedic at-sight one-lip, Dlo.
cess in question.

Yes, but what about other numbers, in general, which are 4.
where near any power or multiple of ten or a “normal” dep,.
minator-divisor ending in 9 or a series of nines? Have they beey
provided for, too?

Yes, they have. There are methods whereby, as explained in
an earlier chapter the one dealing with recurring decimals we can
easily transform any miscellaneous or non-descript denominatar
in question—by simple multiplication etc.—to the requisite
standard form which will bring them within the jurisdiction of
the auxiliary fractions hereinabove explained.

In fact, the very discovery of these auxiliaries and of their
wonderful utility in the transmogrification of frightful looking
denominators of vulgarfractions into such simple and easy deno-
minator-divisors must suffice to prepare the scientifically-minded
seel::vcraftcr knowledge, for the marvellous devices still further
on in the offing.

e o e bt g nd o 3.

bilty a, ;n h: ur:::-:t_ th} subsequent chapters dealing with i_ﬂﬁ

and m“ the application of the Ekadhika Piirva etc., asPOS
gative osculators in that context.
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pivisibility and Simpj,
Osculators

__-__-_—_-____'_-——___

We now take up the interesting and intr;
one can determine before-hand whether
however long it may be is divisible by a certain given divisn
especially as to the Vedic processes which cin help us h::reirf i

The current system deals with this subject but only in an ﬁ]tm-
superficial way and only in relation to what may be termed the
most elementary elements thereof. We need not now enter jnto
details of these including divisibility by 2, 5, 10, 3, 6, 9, 18, 11, 22
and so on, as they are well-known even to the mathematics-
pupilsata very early stage of their mathematical study. We
shall take these for granted and start with the intermediate parts
and then go on to the advanced portions of the subject.

Eling question asiq how
4 certain given number

THE OSCULATORS

As we have to utilise the "¥%ds (Vestanas =ﬂ5¢uia:mr3}
throughout this subject of divisibility, we shall b&Ei".w'm i
simple definition thereof and the method of their application.

Owing to the fact that our familiar old friend the Ekddhika IIS:
the first of these osculators, i-e. the positive i ﬂ: 1:35.:-
becomes all the simpler and easier. Over and zhn;lse; :hmfn
number of purposes which the Ekadhika has already fiil‘_r deter-
to fulfil, it has the further merit of helping us to ﬂiﬂdﬂﬂd by
Ming the divisibility or otherwise of a certain give

dcertain given divisor. . vilar familiar old
Let us, for instance, start with our st Guinea-pig

°f experimental-subject or shall we Sa%  the Ekadhika
tumber 7.The studm::t need hardly be “’lmmdfjtfm’['hn Eladhika
ﬁ.'l],' "li' is_ d{:ri‘lrﬂ'd ﬁ'{)m ?:E:_T———'qu .'-].ﬂd 15 '[hl:'l'li:ﬁ] a
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is a clinching test for divisibility; and the proceg, i
serves this purpose is technically called Fegrang o "DSEUI;H-%“
Suppose we do not know and have to determine Whether ‘2“[!1".

divisible by 7. We multiply the last digit, i.e. 1 by t, Pt i
(or Positive Osculator, i-e. 5) and add the product, j.,. 5 lﬁiq
e

previous digit, i.e. 2 and thus get 7. This process i technjcyy
called “Osculation”. And, il the result of the osculatioy i8 the
divisor itself or a repetition of a previous result), we say tha
given original dividend 21 is divisible by 7. '

A trial chart (for 7) will read as follows:

14: 4% 5-4+1=21;and 1 X5+2=T .. Yes.

21 (already dealt with);

28; 8% 5+2=42; 2 5-}-4 = 14 (already dealt with)
35; 5% 543 =28 (already dealt with);

42 (already dealt with);

49; 9 54-4 =49, (Repetition means divisibility).
36; 6 34-5=735 (already dealt with);

63; 3% 5+6=21 (already dealt with):

T0: 0% 54+7=T . Yes

T7; TX5+7=42 (already done);

84; 43 54-8=28 (already over);

91; 1% 5--9 =14 (already dealt with);

98: 854949 (already done);

Now let us try and test, say, 112.

112; 2% 541 =11; 11x541=56 S Yes.

ﬂf!}ﬁﬁ-}—l]‘ =21 oyt Ygg,

Frg;inl:;:u:ge E;EE?L f:,; 13; and we find the repetitions mote

plying leftward by 4. Th-.:; fka is 4. Therefore we go on multi
13;3%4- 1213
26; 6% 41226
39, 9x443-39
3222445 13
65, 5%4-1-6-.26
78;8%4.4.7 -39
;1 %449 13
Imid}{d_}.]ﬂuzﬁ

The repetition etc., is uniformy
l‘hure and in correct sequence 0%
I"'c' ‘Ij: Iﬁg Jg! .‘. Yﬂs-

D it
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Divisibility aqua Snp e Chseny,
Setlatsy.,

EXAMPLES OF THE OscuULATION pp, i
2

' EDU
A few examples will elucidate 4, Proce RE (VesTans)
(1) 7 continually osculated by's 583

] rl
Dfl'

(3) 9 (by 7) gives 63, 27, 31, 12, 15 e,
(4) 8 (by 16) gives 128,140, 14 ate.
(3) 15 (by 14) gives 71, 21, 16 etc.
(6) 18 (by 12) gives 97, 93, 45, 64,
(7) 36 (by 9) gives 57, 68, 73, 79, B? 533313‘1{,:;16 o
(8) 46 (by 3) gives 22, § ete. I l
(9) 49 (by 16) gives 148, 142, 46, 100, 10, 1 ete.
(10) 237 (by 8) gives 79, 79 etc., and is -, divisible by 7.
(11) 719 (by 9) gives 152, 33, 0. 3 ete.
(12) 4321 (by 7) gives 439, 106, 25, 19, 64, 34, 31, 10, 1 ete.
(13) 7524 (by 8) gives 784, 110, 11, 9 ete.
(14) 10161 (by 5) gives 1021, 107, 45, 29, 47, 39, 48, 44, 24, 22,
12, 11, 6 etc.
(15) 35712 (by 4) gives 3579, 393, 51, 9 etc.
(16) 50720 (by 12) gives 5072, 531, 65, 66, 78, 103, 46, etc.

N.B.: We need not carry on this process indefinitely. We can
stop as soon as we reach a comparatively small number which

gives us the necessary clue as to whether the given number is
divisible or not by the divisor whose Ekddhika we have used as

our osculator! Henez= the importance of the Ekadhika.

RULE FOR EKADHIKAS
the Ekadhikas are

(1) For 9, 19, 29, 39 etc., (all endingin )
1,2, 3, 4 ete. - hem by 3;

(2) For 3, 13, 23, 33 ete. (all ending in 3) "};};’f Y e
and you get 1. 4, 7, 10 etc., a3 thﬂ. Ekat ltiply them by

(3) For 7, 17, 27. 37 ete, (all ending ":1:31:: ‘kadhikas
and you obtain 3, 12, 19, -5 F7%

7
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(4) For 1, 11, 21, 31, ete., (all ending in 1), myp;

9: and you get 1, 10, 19, 28 ¢tc., as the Fp &“T-‘iil.:c;; thep, by

OSCULATION BY OWN EKADHIK

Note that the osculation of any number by jtg OWN. Bk
will as in the case of 7and 13 go on giving that very ““mh..;‘ a
a multiple thereof. Thus, o

(1) 23 osculated by 7 (its Ekadhika) gives 7x 342 =23,
46 (osculated by 7) gives 7X6-+4 =46;
69 (similarly) gives 7X9+6=09;
92 (likewise) gives 2 X 749 =23;
115 (similarly) gives 7% 511 =46, and so on.

Now, 276 osculated by 7 by way of testing for divisibility by
23 gives 7% 6427 =69 which again gives 69! ., Yes. Thus, aj
the multiples of 23 fulfil this test, i.e. of osculation by its Ekz.
dhika 7. And this is the whole secret of the Vegtana sub-Siira.

Mopus OPERANDI OF OSCULATION

Whenever a question of divisibility comes up, we can adopt
the following procedure. Suppose, we wish to know—without
actual division—whether 2774 is divisible by 19 or not. We put
down the digits in order as shown below. And we know that the
Ekadhika osculator is 2.

(i) We multiply the last digit 4 by 2, add the product § to the

previous digit 7 and put the total 15 27 1k
down under the second right-hand digit. 13

(#) We multiple that 15 by 2, add that 30 to the 7 on the upper
row, cast out the nineteens from 2717 4
that 37 and put down the re- 3715
mainder 18 underncath that 7. (18)

J"-";-l' This_-:asting out of the nineteens may be more easily E:il:id
speedily achieved by first osculating the 15 itsell getting ”’i

ing it to the 7 to the left-ha ;
_ -hand on the top-row 2
and putting the 1§ down Lthereunder. 5 18 15

T W |
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we then osculate that 18 with the 2 14 the left
ont

ow and get 385 or we may osculate th on the upper
17, add the 2 and get 19 as the fina] ﬂmuf 13 ]E‘fcln oblain
jated result. _:"md, as 19 is divisible by 19, ‘IEISI- : T 4)
we say the given number 2774 is also divisible 815 )

therchy.
This is the whole process; and our chart Says:

B}r 19? { 2 ? 7 4} A Yﬂﬁq-

(i)

-« The osculator is 2 19. 18 15

Or secondly, we may arrive at the same result as effectively but
ess spectacularly by means of a continuous series of osculations
of the given number 2774 by the osculator 2 as hereinbefore ex-
plained. And we can say:

«+ 2774 osculated by the osculator2 pives us 285, 38 and
19,
s 2774 is divisible by 19.

N.B.: The latter method is the shorter but more mechanical
and cumbrous of the two; and the former procedure looks neater
and more pictorially graphic, nay, spectacular. And one can
follow one’s own choice as to which procedure should be
preferred.

Note: Whenever, at any stage, a bigger number than the divisor
comes up, the same osculation-operation can always be per-
formed.

Some more specimen examples are piven below:

(1) By 297 . The osculatoris3.§ 3 28 9 6 i - No.
27 8 31 27

Or E osculated by 3 gives 3307, 351, 38, 27, etc. .. No.

H d‘ S‘ l|-l' YEE
(2) By 297 - itrigdo oy ¥4 }
v 297 - The oscul i 129 26 27 28

d 29
Or The us-ﬂlllatiﬂn-rﬂsulti are 9338, 957, Lioap * Yes

T e
(3)By 29? - The osculatoris 3. § 2 43 45 ; }

i sg 9 21 6 20 =
43455, 24360, 2436, 261 o

Or The osculation-resulte ars 2 29 Yes



F

, « The osculatoris4. [ 4 9 _
{'ﬂﬂ} k. { 39 38 17 . el Yﬁg

or The osculation-results are 507, 78 and 39

v+ Yeg
» The osculatoris 5.( 5 3 3
(10) "+ N,

Or The osculation-resultsare 543, 69, 51 ang 10 - N,

(6) By 597 ., The osculator is 0. {1 L 5 73 *Neg

39 49 46 37 25
Or The osculation-results are 19175, 1947, 235 and 53
v Yeg

(7) By 597 ., The osculator is 6. { l 256 7y Yes
59 49 57 48

Or The osculation-results are 1298, 177 and 59 ;, Yes

(8) By 39 7 ", The osculatoris6. (4 0 1 7 9 17 . N
47 17 52 38 15

Or The osculation-results are 40185, 4048, 452 and 57 * No

(9) By 797 *, The ﬁsuulatnrisﬂ.{ﬁ 3009 4 82 l}

13 70 38 64 76 9 10
.~ No.
Or The osculation-results are 6309490, 630949, 63166,

6364, 668, 130 and 13 ., No.

(10) By.43? . The osculator i513.¢1 4 0 6 1} - Yes
{119 119 118 19
Or The osculation-results are 1419, 258 and 129 ., Yes

(11) By 537 The osculator js 16. 2 1 9 5 37, No
0 _ {149 39 62 53 }
r The Osculation-results are 2243, 272 and 59 ... No-

(12) By 1799 ». The osculator ig IE-{T 1 455 9 EE

179 109 6 20 150 18 2,

M 6 d
Or The Osculation-resylte are 714568, 71600, 7160, 716 ab
179 .., Y¢8



LA PTATERTEE TR WA LAse oy
L firs

r”liﬂc -||_|‘||||'_'_l her 52932‘1”“{”; i". [l i"-"i’ ih' ]
NG BY (39 4r Firit

ghe current method (just by y,
1 39]5431?!3.1‘“-1{}1] 5{3 Hﬂﬁ;éf;i Of Caarites Ty

1 IJ-I:I.I.:

(I- (A) B

1123
(12

1124
1112

e

1200
1112

889
834

556
556

b > Nog,
(B) By the Vedic method:
By 1397 =, The Ekadhika (osculator) is 14.
{5 29324{1'&95‘%‘1’55

139 89 36 131 29 131 19 51 93

Or The osculation-results are 529324093, 52932451

5103259, 529451, 52959, 5421, 556and 133 ., Yes
Note: In all the above cases, the divisor either actually ended
in9 or could—by suitable multi plication—be made to yield 2
product ending in 9 for the determination of the required EEd-
dhika or Osculator in each case. But what about the numbers
ending in 3, 7 and 1 whose Ekadhika may generally be expected,
to bea bigger number? Is there 2 suitable provision fer g
numbers being dealt with without involving bigger Ekadhia
multipliers?

Yes, there is, and we proceed 10 deal with this.

CUL.-";TDR
fitrd and is called the

=i in the
¢ qddition 35 180
at-& nd this

Tue NEGATIVE 0Os

Em i_5 an application of the Pard partya S
Bative asculator because it is @ process ™

E a
:é:& of the Ekadhika but of Subtractio? EHnrﬂ i,
Ually means a consequent ylternation of phis



EXAMPLES OF THE NEGATIVE OsCuLATION P

Roeps
(1) 36 thus osculited by 9, pives 3—54 . _ 5L
() 7 osculated by 5 gives 0—35.- — 35
(3) 35712 osculated by 4 will yield 8- 3571 - _ 1553

How 10 DETERMINE THE NEGATIVE OscuLatoy

Just as the Ekddhika the positive Vestana has bee
ed and can be correctly ascertained, similarly the
lator will also require to be determined by mean
definition and has been so defined with a
recognition.
It consists of two clauses:
() In the case of all divisors ending in 1, simply drop the one:
and g
(if) In the other cases, multiply so as to get 1 as the last dipit
of the produet, i.e. 3by 7, 7Tby 3 and 9 by 9; and thenapply
the previous sub-clause, i.c. drop the 1.
Note: For facility of symbolisation, the positive and the nega-
tive osculators will be represented by P and Q respectively.

N duly gup ‘
nﬁEﬂti'ﬁ’:ﬂ 08¢y,

: of Prope
VIEW to Propee

EXAMPLES OF NEGATIVE OSCULATORS

(I) For 11, 21, 31, 41, 51 and other numbers ending in I, Qis
1,2, 3,4, 5and s0 on. Note that, by this second type of
osculators, we avoid the big Ekadhikas produced by multi-
plying these numbers by 9.

(2) For 7, 17, 27, 37, 47, 57 etc., we have to multiply them by 3
in order to get products ending in 1. And they will be 2, I
8 11, 14, 17 and so on. In these cases too, this process 13
generally calculated to yield smaller multipliers than the
multiplication by 7 is likely to do.

() For 3, 13,23, 33, 43, 53 etc., we have to multiply them by
75 and the resultant negative osculators will be 2, 9, 16, 2%

30, 37 etc., which will generally be found to be bigger HU™"
bers than the Ekadhikas.

: i
(4) For 9, 19, 29, 39, 49, 59 ctc., we have to multiply th“‘r';ﬁb}rj :
and the resultant negative osculators will be 8, 17, <%

s
44, 53 cte., all of which will be much bigger than the ¢Of
Ponding Elegdhikas.
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IMPORTANT AND INTEREST g FEATURy,

very interesting and jm ortan Atire
Nof¢: A b-.iwucnl’ami Q, ist]mI: wLIljt s I{b‘-]m the
(ationship | ' atever the. divigar (1
I pLQ= > 1.e. the two osculatorg together irn.rar'{ 1}
" up 10 the dfvisur. And .this means that, if one of th:::ii
tnown, the other 15 automatically knc:twn being the complement
‘hereof from the divisor, i.e. the denominatar.

SPECIMEN SCHEDULE OF OSCULATORS P Anp Q

Nomber Multiple for P Multiple forQ  p

Q  Total
: 9 3 1 2 3
< 49 21 3 § 7
81 1 9
2 % (1) I S
13 4 - ? 5B
3 o 51 12 A Yy
Y (19) 171 1.9 1B
21 189 @b ¥ w %
= 69 161 716
= 189 81 R
11 273 (31) 2 : ;_'!-
37 259 111 ML e - g
39 (39) 351 4 1 A
41 369 (41) - 30 43
M %9 301 by i
- 329 141 MWdady g
49 (49) 45411 @ 3
il o' i e 9
2 309 171 % m
% (59) 531 <5 6 6l
61 549 6D TR
3 189 44l B
§7 469 0 g0k e
69 (69) 621 4 1 4
7] 639 L) 2o S
7 219 L1 4. E i
7 231 71
I 539 =11 RN
(79)

7
M =
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N.B. It will be noted :—
(i) that P--Q always equals D
(if) multiples of 2 and 5 are inadmissible for the
schedule;
(iff) and these will have to be dealt with by divig
powers of 2and 5 which are factors of ¢
cerned.

PUrpogey thig

Ing off
he diﬁﬁl}l‘ Lo

A FEW SAMPLE EXAMPLES

(1) for 59, Pis6 ~Q= 53 )
(2) for 47, Qis 14, P= 33

(3) for 53, P is 16,,Q= 37
(4 for 71, Qis7 . P= 64
(5) for 89, Pis9 - Q= 80
(6) for 83, Pis 25,0 = 58
(T) for91. Pis82-.0Q= 9
(8)for 93, Qis65.P= 28 & P-+-Q=D throughout
(9 for 97, Pis 68, Q= 29

(10) for 99, Qis 89+ P= 10
(I for 101, Pic 91 ~. Q=10
(12) for 103, Qis 72.~, P=31
(13) for 107, Pis 75, Q=32
(14) for 131, Qis 13~ P=118 }

]

(15) for 151, Pis 136, Q=15
(16) for 201, Qis 20 - P=18I

Nate: (1) If the last digit of a divisor be 3, its P<its Q;
[2_} If the last digit be 7, its Q<its P; and
(3) in the actual working out of the subtractions of the oscu-

lated multiples for the negative osculators, the actual result wil
be an alternation of plus and minus.

: Explanation: (1) In the removal of brackets, a series of subtrace
tions actually materialises in an alternation of--and—. Fof
example,

a—[b—{c—(d—e—1)]

=a—b+c—d+e—f.
Exactly similar is the case here. polE
(2) When we divide an--bn by (a--b), the quoticnt consists @

L] - i ti
a series of terms which are alternately plus and minus: it}
the same 1s the case here.

! . alter=
ff’am. The student will have to carefully remember T_h'5 'ﬂ:j
nation of positives and negatives. But the better thing will bés
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233
. gne's memory at cach step but g Hirl; ]

o el mnd alternately, say, by means of a Vineulim
h{mrcﬁi'll :':Tl the even-place digits, so that there
z ],;[n; :;ltc safeguard against the possible playing of

ag’s MEMO Y :
by @ od with this safeguard, let us now tackle a fow illustrative
_ M;.:.:s and sce ow the plan works out in actual practjge,
;nstﬂB .417 =, The Negative Osculatoris 4
(1)} : I 63 7 § 3

—41-10 4 31 6 J P
*]q]:a osculation-results are 16564, 1640, 164 and 0 *, Yes

1]3:,?31?.'."-}'*3 6 6 0 3
& 033 9 s Yes

12 digits
ftom Fight

may be an
any pranks

Or
The osculation-results are 651, 62 and 0 *, Yes.

() By 41?7, Q=4 {i 1. 2% 4]
010 13 13 .. Yes

Chr
The osculation-results are 1107, 82 and 0 ', Yes

(4) By 477 . Q=14 YT 4 318 5}
11 102 7 51 64 » No

Or
The osculation-results are 74146, 7330, 733 and 31 ", No

() By 517, Q=3 i 3% 3 8 1]
[—511‘33213 3 s, No
Or

The osculation-results are 43727, 4337, 398 &1 .. No
6)By6l? - Q=61 8§ 5 g 1 ]

Or 0—51-7-2 s Yes

The osculation-results are 1952, 183 and 0 .\, Yes

(NBy677 - Q=20 (1 O T7 1 2 ﬁal
{G—lﬂ 101 5—81—-4 60 | .. Yes

Or d
The osculation-results are 1017060, 101706, 10955 1;”]5 i’r::s
©)By91? + Q-9 93{1155“53]
Y= - No
O Is-ﬂ. 60 49 56 3744 1622 ] -

; 0804006
E The osculation-rerults are 98043878, 9804513,

07986, 9744, gigand 21 .. No
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(@) By6l?,,Q=6(1 2 2 1 3 0 54
Or {ﬂ 10 2 01053 19 o
The osculation-results are 1221281, 122122, 12200,

o 122and (. 2,
(10)By 717, Q=7 (8 0 8 0 Z 5) e Yy
Or {U 62 19 4 31 | < Yes
The osculation-results are 80869, 8023, 781 and 71 R
(11)By 1312 . Q=13¢1 3 3 7 9 § 3
Or {ﬂ 10 120 123 39 * Yes
The osculation-results are 133751, 13362,1310 and 131* Yes
(12)By141?7 . Q=14(4 8 9 § 8 § 7
|94 87 37 2 41 93 } = No

N.B. But this dividend yielding the same results is divisible by
47 whose Q is also 14. (94 =47 2)



rHIRTY
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pivisibility and Compleyx
Multiplex Osculators

i

—

The cases so far dealt with are of a simple type, involvin

<mall divisors and consequently small osculators. Whaf fliﬂlf

about those wherein bigger numbers being the divisors, the ggﬂin

jators are bound to be correspondingly larger? ’ )
The student-inquirer’s requirements in this direction form the

subject-matter of this chapter. It meets the needs in question by

formulating a scheme of groups of digits which can be osculated,
not as individual digits but in a lump, so to say.

ExaMPLES OF MULTIPLEX VESTANA, L.E. OSCULATION

(1) 371 osculated by 4 for 2 digits at a time, gives 3-71x4
(=287) and 3—284 (= —28l) for plus oscillation and minus
oscillation respectively.

(2) 1572 osculated by 8 for 2 digits gives 1543576 (=591) and

~ 15—576 (= — 561) respectively.
(3) 8132 osculated by 8 (P and Q) for 2 digits gives 814256
(=337) and 81 —256 (= —175) respectively.
(8) 75621 osculated by 5 (Pand Q) for 3 digits gives 75+3105
(=3180) and 75— 3105 (= 3030) respectively- ;
(5) 61845 osculated by 7 (P and Q) for 3-digit gml-l_Plewes
6115915 ( — 5976) and 61— 5915 (= —3854) _rﬁpﬂﬁ:{"’; Fg'im
(6) 615740 osculated by 8 (P and Q) for 3-digit ?;;5; G

61515920 (-6535) and 615-5920 (=~

tively. Sy ives 0-—
(7) 518 osculated by 8 (P and Q) for 4-digit huniflyﬂ

4144 (-=4144) and 0—4144 (= —414) TSP 5 iids 0+
(8) 73 osculated by 8 (P and Q) for five-digit £7 P

S84.(_ 584) and 0 - 584 ( - — 584) respeetiveY’



T Sl ;rn:meman‘c_;

(9) 210074 osculated by § (P and Q)
24-80592 (- 80594) and 2 — 8059, = —gpsabit bup,
(10) 7531 osculated by 2 (P) for 3 digits gives _f?[:;ﬂm o 8
+106y.|

(11) 90145 osculated by 5 (Q) for 3 gives — 79 s
2) 5014112 osculated by 7 i LT
(12) 5 5 ¢ ¥ (Q) for Bives 5&]351

for five.g igit

{]3} 7008942 osculated b}" 3 []P} for 2 g‘iveg 125+Tﬂﬂﬂg:= HE&EE}
(14) 7348515 osculated by 8 (P) for 3 giyes -,343_}4]2&:‘;‘%15
(13) 59076242 osculated by 7 (Q) for 2 EiVes— 591];5; 1294
= ﬁmq’ﬁa
CATEGORIES OF DIVISORS AND THEIR OsCULATORg
In this context, it should be noted that, as there. are Variogs
types of divisors, there are consequent differences as ¢, the
nature and type of osculators positive and/or negative which
suit them. They are generally of two categories:

(#) those which end in nine or a series of nines in which cage
they come within the jurisdiction of the Ekadhika, .. the
Positive Osculator or, which terminate in or contain series of
zeroes ending in 1, in which case they come within the sCope
of operations performable with the gid of the Viparita, iz,
the negative osculator: and

(ify those which, by suitable multiplication, yield'a multiple of

either of the two sorts described in sub-section (i) and can
thus be tackled on that basis.

THE First TYPE

We shall deal, first, with the first type of divisors, nameiy,
those ending in 9 or a series of nines or 1 or a series of zerods
ending in unity and explain a technical terminology and symbe-
logy which will facilitate our operations in this context. Lok
(1) Let the divisor be 499, It is obvious that its osculator P15
and covers 2 digits. This fact can be easily expressed 1
S¥mbalical language by saying: P,--5

e v
@) In the case of 1399, it is obvious that our osculator posit

is 14 and Covers 2 dijpite s
() Asfor 1501, ¢ 'gits =, Py - 14.

. 'fq_."'l".'i
: obviously comeg : av. ie 15 and ¢©
Y dinite 1. = UOVIously comes into play, is
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lrflifﬂfurg

por 2999, Pis 3 and covers 3 g; 247

For 5001, Qq =3

[ﬁj For 7001, Q,=17

.[?J For 79999, P, =8

) For 119999, Py = 12

{g} For 800001, Q; =8

10) For 900001, Q=9

(1) For 799999, P, =§

(12) For 120000001, Q. =12

{4) Bils *, p, 4

(3)

CORRECTNESS OF THE SYMBOLOGY

The osculation-process invariably gives o
itsell or a multiple thereof or zr:fug: For :ia:;leﬂngmal b
(i) 499 (with Py =5) gives us 4-1-5 (99) =__4+45:5:,4gg
(i) 1399 (with Py =14) gives 1314 (99)— 1311386 1399
(iif) 1501 (with-Qa=15) gives 151 —15=0
(iv) 2999 (with Py =3) gives 2--3 (999) = 242997 = 2999
(¥) 5001 (with Q3 —35) gives 5:1—5=0
(vi) 7001 (with Q;=7) gives T%1-7=0
(vii) 79999 (with P;=8) gives 78 (9999) =79999
{rﬁr’} 119999 [wil.h P,=12) gives 11412 (9999)=119999
(ix) BOOOOI (with Q; =8) gives 8 1-8=0
(x) 900001 (with Q;=9) gives 3:x1-9=0
(xf) 799999 (with P, =8) gives 78 (99939) = 799999
(xii) 120000001 (with Q;=12) gives 12X 1- 12=0
N.B.: The osculation-rule is strictly adhered to; and the P's
and the Q’s invariably yield the original dividend itsell and zcro

respectively!

UTILITY AND SIGNIFICANCE OF THE SYMBOLOGY

The symbology has its deep significance and high P.mc:}ll?:g
utility in our determining of the divisibility or ”t’ti“‘”};;i o
certain given number however big bya certiin gwcun 1I;E:‘ of digits
Cver I:,u'gq1 inasmuch as it throws light on(! jthe n IJ:E o el i
tbe taken in each group and (2) the actiial 0369
“ach individual case before us.

A few simple examples of each

‘-1.‘ Rlln—.n..-.n oy R . g t“ﬂ!‘ T'{

fy this:

v ,‘_'I i
sort will clari o by 4997

106656874269 divisi
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Here, at sight, P,=5. This means that we have
given expression into 2-digit groups and osculat, by
10 66 56 87 42 69

499 497 186 525 387 ", Yes

(695 =345; 345142 =387; 435+3+.E'?==535. 5
+56 =186; 586661 =497; 5X97+4.+19_ 49 ';izﬁs

r
The osculation-results are 1066569087, 106661
1497 and 499 -, Yes . 10675

(2) Is 126143622932 divisible by 4017
Here Q, =4
Sf 12 61 I3 62 3§ 32
l—lﬁ 400 185 458 99 J No

to 5plig
5. Ty ™

Or
The osculation-results are 1261436101, 126 14357
1199 and — 385. , No : » 125915,

(3) Is 69492392 divisible by 1997

Here P,=2
T 69 49 23 02
199 65 207 S Yes
Or
'I,;I:r: osculation -results give 695107, 6965 and 199
o YES
(4) Is 1928264569 divisible by 59997
Here P, -6

I 928 264 569
{5999 4999 3678 }

Or

2 ETht osculation-resulty are 1931678 and 5999 - Yes
s 2188 6068 313597 divisi
oo visible by 70012

[2' 886 068 313 s97

0 -3
o 6127 3366 } v Vi

Thﬂ ﬂm“lﬂ_ . ;
21003 and 0, .'if‘-":':":_'SuIts give 21 886 064 134, Eiﬁﬂjj’_ﬁ.

. Yes



ﬂfllf_?fﬁﬁ;‘.‘j* artel Cﬂ]"ﬂ.l’f“l: Ml
' ltiplex oy
* Culatorg

(&) Is 30102 1300602 divisible by 997 289
Here I‘: l
As Pa==1 and continuous myje: 1.
2 ¢ ,
no difference to the '““"iﬂlicand_]tI;ff:;mna by |
suffice for our purpose: ' m of the
..l 3G+ID+2] —|—3'}-|—ﬂ|5-:|'-2=gg * YEE
The second method amouns 1 ¢F '
not be put down. O the same thing and need

(7) Is 2130 1102 1143 4112 divisib]e by 9997
Here P, =1 '
and ** 24+1304+ 1104211 434 =
= (by both methods) ?ﬂs.+l i
(8) Is 7631 3787 858 divisible by 99999
Here P, =1
and *° =7634-1378-1-7858 — 9909
.. (By both methods), Yes,
(9) Is 2037760003210041 divisible by 99992
Here P, =1
and ** 2037-+-7600+0321 L0041 =9999
", (By both methods) Yes.
(10) Is 5246 7664 0016 201452 divisible by 10017
Here Q,=1: and
‘8 =531+4-0676-+-Fi8 +~016-+50] +452 =221 =13x17
.". Divisible by 13
But 1001 =7x11x13 ;. Divisible by 13 but not by 7 or by
11. ;. No

can makﬂ
Eroups will

THE SEcoxD CATEGORY

The second type is one wherein the given number is of neither
of the standard types to which P and Q readily and Enstantm?c:-
ously apply but requires a multiplication for the transformation
of the given number to either or both of the standard t‘nrrr%s and
for ascertaining P and Q or both suitable for our purpose in the

Particular case before us.

THE PrOCESS OF TRANSFORMATION
ials” we have shown

In ; ; ine Deci
i I o ag » Decin g
A earlier chapter on ~Recurrng s vulgar-fraction

W 1o convert a @mven decimal fraction 1nlo
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shape, by so0 multiplying it as to bring 2 series of o
product. For example, in the case of . 42854 "ﬂ-‘hadmﬂ in g,

it by 7 and got .999999 (=1) as the prodyct and ?ﬂg‘liﬂi“ﬂ

argued that, because 7x the given decimal—1, 5 e é“".m'“
should be the vulgar fraction 3 _ “img]
(1)  .i42857 7
=.099994 - |
SoX=%
Similarly, with regard to .076923, we had multipl;eq ithys ;
order to get 9 as the last digit of the product: argued thay i:

order to get 9 as the penultimate digit, we (2} 076923
should add 3 to the aiready existing 6

13
there and that this 3 could be had only by B,
multiplying the original given decimal by 230761
1; then found that the product was now a 0.76473
series of nines; and then we had argued
that, ** 13x=1, ,", x must be equal to +. 999994 =
And we had also given several more jllus- Lo X=gle

trations of the same kind for demonstrating the same principle
and process.

As P in the present context requires, for osculation, numbers
ending in 9 or a series of nines, we have to adopt a similar pro-
cedure for the same purpose; and, in the case of Q too, we have
to apply a similar method for producing a number which will
terminate in 1 or a series of zeroes ending in 1.

THE Mobnus OPERANDI

A few examples of both the kinds will elucidate the process
and help the student to pick up his P and Q. And once this 18
done, the rest will automatically follow as explained above.

(1) Suppose the divisor is 857, «» 857 7=5999, we can there-
OIC, at once say: P, — g,

he test and roof . : € n muh[-
Ple of the (; P of the correctness hereof is that any :

tion, j. Visor in question must necessarily fulfil this Eﬂ’jld;;
¥ rheg [}]1 a ; i
thereg, osculation by P, muyst yield 857 or amulip

For INStane
{14I3=~35?! :3* let us rake

one, 4 this proye

. 1B
857 13- 1141, As}'.l_.:._{i I 5l

. rect
8 that sur osculator is the €07



JHVTRRELE SR VAo .'I.."J:.u"ﬁ]'n’ft' o
= MaCulng,
ry

perusrowtake d3. g qg Lo o
- 4 -9 ; b | ! oas C
qaking $3%3 (=129 for the test, vye 0, 13"
qé,r .nd 86 isa multiple of 43 being exactly dg'l”ﬂl':ls
ur;:'ﬂfs correci.
Thcﬂisﬂfﬁ““"w of this fact consists i, the naty
pereof: namely, that any number whicp, -
givisor in question must conform to th;

e P process or the Q process.

N.B.: Remember what has already beeq gy
or (0 being greater.

In this very case of 43, instead of multjplvine ;
.01 as the product and ning thar PUINg it by 7, getting
101 as the pro a.scertamn.ng that Q;=3 is the Bsculatar
we could also have multiplied the 43 by 3, got 129 a5 the pmdul::
found P, =13 to be the positive osculator and verifiag it. ﬂ.L-}
inthe case of 43X2=86, . B+-6(13)=86 ., P, =13 is the correct
positive osculator.

Multiplication by I3 at every step being necessarily mors
cumbrous than by 3, we should naturally prefer Q,=3 1o P, =13.

In fact, it rests with the student to choose between P and Q
and in view of the bigness or otherwise of multiplier-osculator
ete. decide which to prefer.

(3) Ascertain the P and the Q for 137.

2901
n._.-_f
OUble of i, ¢,

! CoOntaquer,.
1S really divisible g, oo

s rule of ¢ f the

l'r"isjhih't_r..-' b

Plained a5 regards P

137 . P,=37 137 - Q,=14
27 73
959 411
274 959
3699 10001

o]

i i : g =37)-
Obviously Q,=1 is preferable (to Pz = 3959 . Yes)

(Test: 13738 = 1296 -+ Q, gives 960~ 1

(4) Determine the P and the Q for 157
.l- IS?H?=I099 e -PE-";I.]- Idﬁ
And 157:x93 == 14601 .'.f—;” -
~. Py =11 is to be preferred. L roa ~1090)
(Test: 157:¢7 = 1099 . P, gives 101089
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(5) Find out the P and Q for 229
=» 2203 131 =2999% . P,=3
This Osculator being so simple, the neeq
tried at all. But on principle, " 229 % 69 = 1580 ot p,
* Q.=158 obviously a big multiplier
Test for P, =13
229 » 100 = 22900 ', P =3 gives 8702 =229y 33
(6) Find P and Q for 283
++ 283 53=14999 -, Py =15
and ** 283 x47=13301 ;», Q;=133
»* P;— 15 j5 preferable
Test 283 4=1132; 14+15(132)=1981 =283« 7
(7) Find P and Q for 359
“* 35961 =21899 », P,=219
and =" 359x339=14001 -, Q,=14
Obviously Q, =14 is to be preferred.
Test: (i) 319x3=1077 5, Q;=14 gives 14x77-1=1077
and (i) 359x115=41285 ., Q;=14 gives 14x285-41

= 3949 =359 %11
(8) Ascertain P and Q for 421

AL x19=T999 *, P,=§
and *" 421 x 81 =34101 ., Q, =341
obviously P; =8 is the better one
Test: 421x5=2105 [, P,=8 gives 2--840=842

=421 X2
(%) Determine P and Q for 409

" 409% 511 208999 °, P, —209
and ** 409 x 489~ 200001 ., Q, =2
Obviously the Q osculator js preferable.
Test: 409 = 1000 == 409000
"+ Q=2 gives 18000 — 4 = 17996 — 409 » 44

IIEm.rimg thus studied the multiplex osculator technique am:_
z‘i‘d;lﬁl:':;ﬁfm”]?’ We now go on to and take up actual examples ¢
pm:.x:durzr, Whichean be easily tackled by the multiplex osculato™s

(1) 15 TQMHEEL ‘a""f'“ﬂamnms TO CONCRETE EXAMPLES
5 2138435267 divisible by 2297

29999 . P,-3



piisibility and Complex Multipley. ;.0
Heliatary

. (791 5843 5267 293
’ lms 21644 ]
put 5725 =229 X253 ", Yes
@ 1s 5056200566 divisible by 2837
.+ 28335314999 , P, 15
6 056 200 566
6226 10414 8690 }

But 6226 =28322 ", Yes

(3)1s 7392 60261 divisible by 3477
v+ 347 % 317=109999 * P,=11]
7 3926 6251
73654 0627 l
But 73654 =347 %212 * Yes

(4) Is 867 311 7259 divisible by 3597
-r 35039 =14001 ., Q,=14
(B 673 117 259
{ 3590 257 278 } " Yes

(5) Is 885648437 divisible by 3672
367 x3=1101 [, Q,=11
(8 B 64 8L 37

l 734 66 314 323 ]
But 734 =367x%2 .". Yes

(6) Is 490 222 8096 divisible by 4337
++ 433 3=1299 ., Py=13
(49 02 22 8 95}
{125? 1292 399 1328 ", No.

(7)1s 51 888 888 37 divisible by 4677

' 467%3=1401 -, Q=14
{ 51 5§ 88 BB 3?)-'- g

— 467 —37 504 430
: N.B.: The alternative method of success s
tions is also, of course, available but _wﬂl pr
Neat and tidy and will also be more tediots

(8) 1s 789405 35994 divisible by 6477
Sat i o g s w P ]

Ve maﬁhanical oscula-
penerally less
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78 940 535 994
1294 6110 11469 }
But 1204=647x2 ., Yes
9) 152093 1726 7051 0192 divisible by 9917
.+ 991 % 111 =110001 ., Q,=11.
2003 1726 7051 0192
‘ —~30721 —52603 —4939 }
But 30721 =991 %331 . Yes
(10) Ts 479466 54391 divisible by 4217
;421 %19=7999 1, Py=8
S 47 946 654 391
l 1694 7205 3782 ] No

(11) What change should be made in the first digit of the aboye
number in order to render it divisible by 4217

Answer: As 1684 is exactly 4421, the only change needed in

order to reduce the actually present 1694 into 1684 is the
alternation of the first digit from 4 to 3.

294
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gum and Differenc

¢ of SC[uareg
—— _"'—‘-——-.________________‘__.

Not only with regard to questions arising in conp
arising out of Pythagoras’ Theorem which we sh
gp but also in respect of matters relating to
mental Trigonometrical-Ratio-relationships as indicateq b ' th
shree formulae sin*ltcos* =1, 1-Ltgne 8=sec? § and 1+:;Dﬁ;
~cosec* @ etc., we have often to deal with the difference of 1wo
square numbers, the addition of two square numbers ete. And it
is desirable to have the assistance of rules governing this subject
and benefit by them. '

ection with ang
all shortly take
the three funda.

DIFFERENCE OF TWO SQUARE NUMBERS

Ofthe two, this is much easier. For, any number can be ex-
pressed as the difference of two square numbers. The Algebraical
principle involved is to be found in the eclementary formula
a’—b?=(a-+h) {a— b). This means that, if the given number can
be expressed in the shape of the product of two numhers.rt?ur
task js automatically over. And this “if" imposesa mndtfmn
which is very easy to fulfil. For, even if the given number Is i:.
prime number, it can be correctly described as the prqd;lﬂt E::l
itsell and of unity. Thus 7=7x1, 17= 171, 197=13727 &0

50 o,

In the next place, we have the derived formula:
(a + b)? —;:_’a — b)® = dab; and therefore E!:h can always
E-i—h \ 2 a—b =1 {h:ﬂf the

‘ome into the picture as. s, ,' 8 be expressed
SUM)*— (half the difference)® and as any numbﬂl;m:r the number
l:tt'“ I‘act:&ria&tianﬂ possible, the better- i ﬁmt’-:ﬂ- golutions will
tiong tgq as permissible, the number of possible

£ !.illfrnffu LA I
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For example, suppose we have to express 9 as the difr
two squares. We know that— “Fence of

) 041 \* 9—1 32 ;
Q=9x] ., e ('—2—) = (‘—2-') =542, Simiiaﬂy

(1) 3x1=()P- (P =1"-6°

(2) 12=06X2=42-2¢
or 4x3=3}*-}*
or 12x1=642—5)*

(3)48=8x6=T2—]2
or 12 x4 =§2—42
or 16 %3 =932— 6}
or 48 x 1 =2434*—- 2342
or24x2=132-1]%

The question, therefore, of expressing any number as the diffe.
rence of two squares presents no difficulty at all !

THE SuM OF TwWo SQUARE NUMBERS

Inasmuch, however, as a®+b® has no such corresponding
advantage or facilities etc., to offer, the problem of expressing
any number as the sum of two square numbers is a tough one

and needs very careful attention. Therefore, we now proceed to
deal with this.

A SIMPLE RULE 18 OPERATION

We first turn our attention to a certain simple rule at work in
the world of numbers, in this respect.

We need not 20 into the relevant original Sirras and HFia",”
them especially to our non-Sanskrit-knowing readers. Suffice it

f[ll'- 'Ll.EJ fi:l' our pl‘{:SE:I]t purpﬂﬁﬂ‘, to ﬂHFlﬂil‘l tI'lEiI’ purpnr[ and ‘[hﬂir
application.

Let us take 5 . . ey
Particular ser PR T L1 ions, mamely,
11, 22, 32 44 rserjes of “‘mixed” fraction

2l : e
b 77 ete. Which fulfil three conditions:

i) ths : : I
& m::.:e;}.m Integer-portion consists of the natural numbers I*
(]

(i) that 1he
({if) thay the xactly the same; and S
COMmrmase. ] O are the ~d4d «imbers 10

Numerators gre e



Sum and Difference of Squares

. be ﬂhﬁgrvcd that, when all these rfﬂ:‘.t_iﬁ 207
11" mproper” fractions. 1S are pug jny,
sﬁﬂpﬂ:e. as 4 :1.!'-;:1{1;’.-“-11 A 41 ﬂh::-tr
; 2 gnd N* is invariably equal y
e :i;ﬁ‘nrm being. Ao (N+1)* the General
AP fan (n+1)
R { “2n+1
; D=;:n-|-1;and N=2n(n+1)
L DU NE=(N+1P
o {gnJ,—l]i—I—#ingl:nh—l- 1 =(2n?42n4-1)2
chape of it is perhaps frightening; but the thing in itself :
w;i;h:impl}:t: and the best formula is Dg_[q}qz:l;;ﬂ_‘?ﬁfu itself is
This means that when a® (given)+x* is a perfect square, we
can readily find out x2. Thus, for instance,
(i) 1f the given number be9,2n+1=9 * n=4
+ 43 is the fraction we want. And 92402 - 4]2
(if) If a be 35, 2n+1=35 ., n=17 ., The fraction wanted
s 1741 =888+ 35%46128=613"
(i) 1f a =37, 2n+1=57 .. n=28 ., The required fraction
52888 —1822 . STILI6047=1625% -
(v) fa=141, 2n+1=141 n=70 . The wanted fraction
is 7010 = 2240 < 141209407 =99412
Note: Multiples and sub-multiples too behave in exactly the
same manner according to Anuriipya, i-e. proportionately. For
mstance,
Leta=35 = 2n+1+435.. n=17 . The fraction wanted
is1702 812 . 35246122 =613

=755

o T0°4-12242 = 1226°

sum

A SiMPLER METHOD (FOR THE SAME)

; ‘ ;.
Method which does not necessitate the “ml??:-'d ]‘rﬂctiuﬂ—sllapﬂ
transt"urming of them into the «jmpropel. —

“I%, but gives us the answer smmediately- . :
h above,
giwm be observed that, in all the examples dealt with &
nee DH_NE___ N1
o =={N+EF"P§3=1H+1 FHJJ'{N'HL,;: is the sum of
o O words, the square of the given num :

s iﬂstﬂﬂﬂ'ﬁr 1
¥ Consecutive integers at the gxact middle. For
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be the given number, its square =49 which cap split

the two consecutive integers 24 and 25. U iny,
= 7 r3dE =252 Similarly,
(1) If a =9, its square (81) =40--41 », 921402 _ 4,
(2) If a=35, its square (1225)=6124-613 - 3521610

(3) If a =757, its square (3249) = 162441625 ., 5?24-1514::1513!

(4) If a = 141, its square (19881) = 994019941 = 1625t
S 141%4-9940° =994] 2
and so on. And all the answers are exactly as we obtained before
by the first method.

THE CASE oF EVEN NUMBERS

Yes, the square of an odd number is necessarily odd and cay
be split up into two consecutive integers. But what about even
numbers whose squares will always be even and cannot be split
up into two consecutive numbers? And the answer is that such
cases should be divided off by 2 and other powers of 2 until an
odd number is reached and then the final result should be multi-
plied proportionately.

For example, if a = 52, we divide it by 4 and get the odd
number 13. Its square (169) =84-4-85  132-842 =85 », multi-
plying all the terms by 4%, we say: 52243362 = 3402

There are many other simple and easy methods by which we
can tackle the problem (of a®+-b?=c?) by means of clues and
conclusions deducible from 3Ppgeo5e 52213, 841

=17% etc. But we do not now enter into details of these and othef
allied matters.
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Tl
plementary Squaring, Citbing e
R .

jn some of the ear liest chapters of this treatise, we have gea
jength, with multi plication-devices of varioug sorta, amjta t, at
ng, cubing ete-, are only a particular application thereof. Thie i
why this subject too found an integral place of its own in t hl.g is
earlier chapters on multiplication. 052

And yet it so happens that the squaring, cubing etc., of num-
vers have a particular entity and individuality of their own: and
nesides, they derive additional importance because of their inti-
mate connection with the question of the square-root, the cube-
oot etc., which we shall take up shortly. And, consequently, we
shall now deal with this subject of squaring, cubing etc., mainly
by way of preliminary revision and recapitulation on the one
nand and also by way of presentation of some important new
material on the other.

THE YAVADUNAM SUTRA (FOR SQUARING)

In the revision part of it, we may just formally remind the
student of the Yavadiinam formula and merely cite some exam=
ples thereof as a sort of practical memory-refresher:
1.97:=94/09;

2.872=174,/,69 = 7569

3192 1,, 8,1 — 28,1 =361

4.912= 82/81

5.965 =930, /225 = 931/225

6. 1132 =126,/69 = 12769

7.9962 = 992/016

8. 9982 - 996/004
2 9997:-9994/0009

1y 10072~ 1014/049

+99962 - 9992/0016
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12. 9999° . 9998/000]
13. 10175 =1034/289

14. 10392 = 1078,/521 = 1079/521
15. £9991* =99982,00081

16. 999982 = 9999600004

17. 999942 — 99988/00036

18. 100042 = 10008/0016

19. 9999782 — 999956/000484

20. 999998 — 999996000004

21. 1000232 = 100046/00529

22. 99998732 — 9999746/0016129
23. 99999992 = 9999998 /0000601
24. 10000122 = 1000024/000144

THE ANURDPYA SOTRA (FOR CUBING)

This is new material. A simple example will, however suff
to explain it: ' =

Take the hypothetical case of ane who knows only the cubes
of the *“first ten natural numbers”, i.e. 1 to 10 and wishes to go
therebeyond, with the help of an intelligent principle and proce-
dure. And suppose he desires to begin with 112

1. The first thing one has to do is to put down the cube of the
first digit in a row of 4 figures in a geometrical ratio in the exact
proportion subsisting between them. Thus,

I113=1 111
2.2

1331

(if) The second step is to put down, under the second and third
numbers, just two times the said numbers themselves and add
up. And that is all!

A few more instances will clarify the procedure:

(1) 123 243 @) 13=13 927
6 18
1628 19 77
1 2
S L 2
1728 51 97
21 97

e
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16 64 1)}
1 1=1 4 4 )
27 4 4 :‘5"!-{3-:5-?______
1 3 T
-1 & 36 216 5
@ 137 O-T T
= 98
1 3
= 64 512
181 % 128 ® 1919 57 755
- 18162
5 8 312 e
gar-s22l (102 35 § 5
-E_.. 16 16
9261 106 48
(11)23*=8 12 18 27 (12)24*~8 16 32 64
24 36 12 64
121 67 1382 4
13) 25~ 8 20 50 125 (14) 322=27 18 12 8
() 40 100 36 24
156 25 32 7 638
(15) = (10— 1)
= 1000 - 100--10—1
_200+20 | —1000—300430—1=729
(16) 975729 567 441 343
1134 BB2
012 6 17 3
or, better still, 97* =(100—3)°
-100000 — 30000+ 900—27
— 600001800
1000000 — 900002700 —27
3
= 912 6 7 oo qake the
: —— b first digit a0 :
N.B.. If you start with the cube [.J:: ltegmmet ical j Tai
Next three numbers in the top oW ! 1

' o lves you ™ diait!
1 th,a I'-E;Tjn nf‘ the ﬂrigi na] dlgl.tE. th‘ﬂmsﬂ bE Dr-l ﬂ-l:ﬂnd Ig
the 4th fipure on the right end
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The Algebraical explanation hereof is very sitmpe:
If & and & are the two digits, then our chart regg,.
a3+ ath-} abi*-+b? -
2a*b-L2ab®
a3+ 3a?b+3ab*+b?
and this is exactly {a-{-b)*!
Almost every mathematical student knows this: byt Yor
people apply it! Thisis the whole tragedy and the pathg, ifiﬂl*:r
situation! &

THE YAvADUNAM SUTRA (FOR CUBING)

The same Yavadinam Siifra can, in view of the above, p,
applied for cubing too. The only difference is that we take hege
not the deficit or the surplus but exactly twice the deficit or the
surplus as the case may be and make a few corresponding

alterations in the other portions also, as follows:
Suppose we wish to ascertain the cube of 104. Our basc being

100, the excess is 4. So we add not 4 as we did in the squaring
operation but double that, i.e. 8 and thus have 10448 ( =112) as
the left-hand-most portion of the cube. Thus we obtain 112.

Then we put down the new excess multiplied by
the original excess (i-e. 12X4=48) and put that 112/48
down as the middle portion of the product.

And then we affix the cube of the original ex-
cess (i.c. 64) as the last portion thereof. And the  112/48/64
answer is complete.

Some more illustrative instances are given below for familiaris-
ing the student with the new process which is not really new but
only a very useful practical application of the (a+b)’ formula
described above:

(1) 1032 =109/27/27 (because 933 =27;and 3*=27)
(2) 113%= ]3:591'2;!'4’9? (because 39 13 =507 and 13° =2l Ejl} 142807

(3) 1004° = 1012/048/064 (because 1234 —48 and 4* =6%) 129)
(4) 100053 — j0015/0075/0125 (because 15 5 =75 and 3= 2
(5) 996° = 988/048 /G5 ~988/047/936 (- — 12 —4 =421 g

{6) 933 =79/47 139 thecayse — 21w -7 — 147 and "TI__ 4357
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Cubing ppe.
, 99913 _0973/024370750 {hEtg.uSe ~2T% —g o 03
( and --ga__ a
g 10007°= 10021/0147/0343 3 =9973/0242)997,
() agg9t = 99997/00003/00001 = 9999750
Itg; ?99 125 ~100036/00432,0172g | 0C02/9998
( 3—99994/00012 /00008 =9
908 i JUUOUE = 99994 00p;
{:E i:gnmma —1000021/000147/000343 fo0011/5999,
E' ) 999992% = 999976/000191/999485 (because 2435 =192
and—gi. _ 512)
FoOURTH Poweg
we know that (2 b)!=a*+-4a%b+6a%b? - dabi 1 bt, Tise sives
us the requisite clue for raising any given number to js fourth

power. Thus,
mig=11111
353

14641

@12¢= 124 8 16
6 20 24

20 73 6

Tue Bryosial THEOREM

The “binomial theorem” is thus capable of practical applica-
tion and—in its more comprehensive Vedic f?rmrff;:gﬂ
utilised, to splendid purpose, in the ‘r’ﬂjﬂzc Siitras. bx:ﬂ e
of Calculus work both differential and integral Tiﬂ'ls, for a later
be facilitated thereby. We shall hold over these detdl '
itape,
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Straight Squaring
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Reverting to the subject of the squar;
need hardly be reminded that thg I:Stlgu;};sﬂifbersl; 7 Mdeny
plained in an early chapter and even i the PI-SEEES ECEL an:d ex-
applicable only to special cases and that 4 general forn EIP g
able of universal application is stjll due. wia cap-
And, as this is intimately connected with 2 procedure known
as the Dwandwa Yoga or the Duplex Combination process and as
this is of still greater importance and utility at the next step on
the ladder, namely, the easy and facile extraction of square roots,
we now go on to a brief study of this procedure.

THE DWANDWA-Y0GA (OR THE DUPLEX COMBINATION PROCESS)

The term “Dwandwa Yoga" or Duplex is used in two different
senses. The first one is by squaring; and the second one is by
cross-multiplication. And, in the present context, it is used in
both the senses (a® and 2ab). :

In the case of a single central digit, the square (a® efc.,) is
meant; and in the case of an even number of digits say, a and b
equidistant from the two ends, double the cross-product (2a0) 15
meant. F

A few examples wil! elucidate the procedure.

Denoting th[:. Duplex with the symbol D, we have:

(1) For2, D=22-4

(2) For 7, D =49

(3) For 34, D =2(12) = 24

(#) For 74, D =2(28) = 56

(3) For 409, D =2(36) +0="12

(8) For 071, D =0+-49 =49

() For 713, D.=2{2[j+f==ﬂ4

ISy = e el e A T MR e F
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(9) D for 7346 =2x424+2x12=108
(10) D for 26734 =164+-361+49 =101
(11) D for 60172 =24--0--12 =25
(12) D for 73215=70+6-1+4=80
(13) D for 80607 =1124-04-36=148
(14) D for 77 =2x49 =98
(15) D for 521398 =804-364-6--122
(16) D for 746213 =42--84-24 =74
(17) D for 12345679 = 18-+-28-+36 440 =122
(18) D for 370415291 = 6-126-+0-+-404-1=173
(19) D for 432655897 = 56+ 54-+32-L60+25 - 227
This is merely a recapitulation of the Urdhva Tiryak Process of
multiplication as applied to squaring and needs no eXposition,

Note: If a number consists of n digits, its square must haye 3,
or 2n—1 digits. So, in the following process, take extra dots t
the left one less than the number of digits in the given numbers,

Examples

(1) 23?3—40309}—42349 . 207
24 40 809

2 4

42 849

(2) 213¢ = 44,369 - 45369
(3) 2212 - 48841
(4)3341=9 8 3 4 6=111556
i 39§
(5) 4252 = .. 425
16/16/44/20/25 - 180625
(6) 5438 = zs4n45249 ~ 294849

(7) 897* . . .897
64/144/193/126/49 =80609
Or 1710 3=151§609 =80609

Or by Yavadiinam Siitra = 784/103% = 80609

gypge. o= B B9
( 64/128]208] 14481 =320

r(lITz= Ty M B I | =
{ ) 1210321 Tl




Srra:'ght Squarin
quaring 307
Or by Yavadiinam Siitra

8892 =778/1112 =789/]2321 =1790/321.

/
111 3

@OUIF = 5557 ¢

(10) 21342 =4/4/13/22/17/24/16 = 4553956

(11) 32142 =9/12/10/28/17/8/16 = 10329796

(12) 32472 =9[12/28/58[44/56/49 = 10543009

(13) 67032 =36/84/49/36/42/0/9 = 44930209

(14) 31.422=9/6/25/20/20/16/4 =987.2164

(15) 07312 =.0049/42/23/6/1 = .00534361

(16) 89782 = 64/144/193/254/193/112/64 — 80604484
Or (1 T 0 3 3)2=1/3/1/4/0/4/4/8/4 = 80604484
Or by Yavadiinam Siitra 7956/10222 = 80604484

(17) 88872 =64/128/192/240/176/112/49 =78978769

2
or (_2-) —1-2-10-3-4-8769 — 78978769

11113

Or by Yavadiinam 7774[1113%2= 7774// ) 8769 =78978769
123

(18) 141.322 =1/8/18/14/29/22/13/12/4 =19971.3424
(19) 213452 =4/4/13/22/37/34/46/40/25 = 455609025
(20) 430312 = 16/24/9/24/26/6/9/6/1 = 1851666961

(21) 463252~ 16/48/60/52/73/72/34/20/25 =2146005625
(22) 732142 = 49/42/37/26/66/28/17/8/16 = 5360289796



HIRTY-FOUR
F...-r..-r'--_-_ e __-___-'_'-
Vﬂl"gﬂmUIa (SCIUEIT'B RGOD

v el =i

Armed with the recapitulation in the last chapter of the «Stra;

Bpperis method” and the practical application of thﬂwﬂ;—.r;i;ﬁi
Joga (Duplex Process) thereto we now proceed to deal ‘de.::.
Vargamiila, i.e. the square root on the same kind of simpls ﬁﬂ.ﬂ-
and straight procedure as in the case of “Straight fo.rigi;mH’, 5y

WELL-EKNoWH FIpsT PRINCIPLES

The basic or fundamental rules governing the extraction of
the syuczre root, arc as follows:

(1) The given number is first arranged in two-digit groups from
right to left; and a single digitif any left over at the left-
hand-end is counted as a simple group by itself.

(2) The number of digits in the square root will be the sams
as the number of digit-groups in the given number itself
including a single digit if any such there be. Thus 16 will
count as one group, 144 as two groups and 1024 as two.

(3) So, if the square root contains n digits, the square must
consist of 2n or 2n-1 digits. .

(4) And, conversely, if the given number has n digits, the

Y e
square root will contain —;— ar H—F%* digits.

(3) But, in cases of pure decimals, the number of digits 1n the

: 5 > t.
square is always double that 1n the square roo bR
(6) The squares of the first nine natural numbers arc 1,4, %
25, 36,49, 64 and 1. Thismeans: o
() that an exact square cannot end in 2, 3 o ‘have either
({f) (@) that a complete square ending in ! 10 ;hﬁ jast digit
1 or 9 mutual complements from 10 23

R -
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(&) that a square can endin 4, only i the ¢
ends in 2 or 8 complements;

(c) that the ending of a squarein 5 or 0 megy, thag
square root too ends in 3 or O respectively,

(d) that a square ending in 6 must have 4 or comp|
ments as the last digit in its square root; and N

(¢) that the termination of an exact Square in 9 is pogy;
ble, only if the square root ¢nds in 3 or 7 comple.
ments.

In other words, this may be more briefly formulated thys,

(@) that 1, 5, 6 and 0 at the end of a number reproduce thep.
selves as the last digits in its square;

(b) that squares of complements from ten have the same lagt
digit. Thus, 12 and 9%; 2% and 8%; 3* and 7%; 4* and ¢*; %
and 5%; and 0% and 102 have the same ending, namely, 1, 4,
9, 6, 5 and 0 respectively; and

(¢) that 2, 3, 7 and 8 are out of court altogether, as the final
digit of a perfect square.

ql.lam rﬁ[l‘t_

ity

READILY AVAILABLE FIRsT DATA

Thus, before we begin the straight extracting of a square root
by “straight division” method, we start with previous knowledge

of (1) the number of digits in the square root and (2) the firs
digit thereof. Thus,

(1) 74562814 N =8 * N in square root=N/2=4; and the first
digit thereof js 8.
(2)963106713. N=9 » N in the square root ——~

the first digit thereof is 3.

But (3) (-7104)® must contain § decimal digits.
{4} ‘vl’q-lﬁ - 1.4

(5) 4/ 0064 = 08

(6) +/.000049 = 007

(7) Vm =.008 etc.
(8) +/.00000007 — .0002 etc.
(9) 4/.09 =,3

vk FIMYL 0 AT Fr—v—

+1 =5; and

.



MopUs OPERANDI (OF STRAIGHT SQUARING)

The PI

N.B.:As2 single digit can never be more thg
therefore that, in our method of straight

geedure of straight squaring as incu
= (1§ is PFECES-EI}' t—hl: 54Mz as in Etrﬁfg]“

i I}’! ﬂl":;‘l-t in f_h_l:} ﬁ]rm:. P 2
r ['l.Tll‘-'.‘ﬂ-r n'lml: A ar thl. d}visn
difie double the first digit of the square roo r should be

Iﬂatcd in {

he Ved;
divi edic

SiOn but with this
t.

n g:|- ft rﬂ“ﬂw_g
squaring, no divisor

shove 18 is necessary. We may, of course, voluntarily choose to
geal with larger numbers; but there is no need to do so.

INITIAL CHART
we thus start our operation with an initial chart, like the

samples given hereunder:

(1) 5 : 29
4 : 0 B

(3) 32 : 49 :
10 : =iy 3

(3) 1 : 63 84 :

1
0] 44 : 44 44

12 8
:6
® 73 : 60:84:
16 - . g - 2
: B
(1 10 : 73 69 42:
fy - -1 .
3

(2) e I
& +3  :
> &
4) 40 : 96 :
12 2 =4 3
a1
(6) 3 3176
4 : :4 :
p
(8) 61 - 13 6:
14 : 12 .
L PO
(10) g : 000001:
4= td :
T
(12) gp : 6l 7174 :
18 : : 9 w4
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FURTHER PROCEDURE

Let us now take a concrete case the extraction of the
root of, say, 119716 and deal with it: Squay,
(7) In the above given general chart, we haye

down the single first digit of the square roq Wwam Y Puy
also prefixed to the next dividend-digit, the Temain d:d&
our subtraction of the square of that firg digit ;Fﬁﬂ
left-hand-most digit or digit-group of 11 !I?ll]“
the given number. And we have alsoset 6: .1 :
down as our divisor, the exactdouble 53—
of the first digit of the gquotient. ey

(if) Our next gross dividend-unit is thus 29. Without subtract.
ing anything from it, we simply divide the 29 by the

Not on)

divisor 6 and put down the second quo- 11:9715.
tient-digit 4 and the second remainder5 6: :25
in their proper places as usual. T 3:4

(/i) Thus our third gross dividend is 57. From this we subtrac
16 the square of the second quotient-digit, get 41 as the

actual dividend, divide it by 6 and 11 : 9716
setdownthe Q () and R (5) in 6: :2355
their proper places as usual. : 3:446 :

(i) Our third gross dividend-unit is 51, From this we subtract
the Dwandwa Yoga (Duplex) (=48), obtain 3 as the

remainder, divide it by 6 and put down 11 : 9716
the Q (0) and the R (3) in their proper 6: :2533
places. = 3 :4600

(v) This gives us 36 as our last gross dividend-unit. From _Thi!
Wwe subtract 36 the Dwandwa Yoga of the third gquoticnl
digit 6; get 0 as Q and as R. This means that the work fiaé
been completed, that the given expres- 11 : 9716
slon is a perfect square and that 346is 6 ____?__f’,flj—
its square root. And that is all. _3_________“‘5"]9-

Complet®’

PROOF OF COMPLETENESS AND CORRECTNESS

ii]ph manifest proof of the complete-squareness of
15O and of the correctness of the square root 4

the £V
wnainﬂ']



Vargamila

inp the latter and find; 33
.. b squﬂl‘n:ll[;t inding the i
15 m':rﬂs the given complete square. Thus, quare to he exactly the

3467 - 9/24(52/4836 = 119716 - v,

) But this is 100 mechanical. We obyiy a neat

coof from the very fact that, if and when the Processj
iato the decimal part, all the quotient. S
are found to be zeroes and the remainde

and valig

g continued
1E1tS 1n the d[:c,]mﬂ] part

PROOF TO THE CONTRARY

A number can not be an exact square in the foll Gwing circia.
stances:
(1)ifitendsin2, 3, 7 or §;
(2) if it terminates in an odd number of zeroes;
(3)if its last digit is 6 but its penultimate digit is even;
(4) if its last digit is not 6 but its penultimate digit is odd;
and
(5)if, even though the number be even, its last two digits
(taken together) are not divisible by 4;
And a square root cannot be correct if it fails to fulfil any of
the requirements hereinabove indicated:

EXAMPLES
Some instructive illustrative examples are given below:
(D 5: 29 : @ 32: 49
4: :10 : 10: :74
: 2: 3 (complete) B :  5:7 (complete) :
@) 40: 96 ) {2 53%4
12: :41 : p 4 +0 23

3 grcomplete):
: 6 : 4 (complete) {::. & HooTl

9 : 9 06321
(8 :55:2049 LR
14: 662 LEERE

—-_-_-_-_-_-_-____——_-_
lete) ; : '_5__1_._.[1-[-}-?-4
G o] o e Thmlﬂlt square

M :53:1 63 214
14: . 41361357

—

— P e rinr-n'!‘llﬂl'l:‘tﬂ:l
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.14: 04 7 504
® 6 : . 581113
3 : 748 ...(complete)

.41: 254929
{9]1}1: : 545210

6:423 00 ﬂ_.-‘. A complete square

(10) :7:389 15489
4: 355136740

.9 - 718 30000 .. Anexactsquare

(1) :25: 745476
10: :074551

5:074.000 . A perfectsquare

(12) :45: 319824
2: :99631

6: 732000  Acompletesquare

(13 :74: 57 53 14 49
16: 1091319127 74

£8:63 57.000 *.. An exact square

(14 :52: 443 90 7(to2places of decimals)
14 : 364137

7: 241 . 82

(15 :73: 2 1 0 8  (to3 decimal-places)
16 : :0 12 16 14 15

8:55 6 33
(1) :18: 134 5 1 2 (to3 decimal-places)
B: :1259101617

: s 5 k.4 64

(1 :13:87000 (to 4 decimal-places)
6 : 46688 12

3TN
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s5: 01 71 0 000 (to4 place
g 114 901110 paees)

—§:6.6 124

L]

(18)

- 00 : 02 24 0160 (to6 places)
6 1 :02 66

—

-0 :3 R ¢ B Ui ' Hior (—

20) 16. : 790 0 00000 (to6 places)
g: 0771419

4. 097 5 6

an 27 130 00 D0ODODO0 (to5places)
10 : 219108167

+5.: 208 64

@ 04 10 7 0 0 000 (to5 places)
16 : : 1051419 14 16

-8 : 60 8 54

2) :19.: 70 6 4 1 2 8 14 (to 6 places)
8 : 35101015 1713

4 = 4391 90...

M) :27.: 0 00 0 0 000 (to6places)
10: :2109121710

+5 +19 615 24..-

(23) : L09: 00451 3 (to5decimal-places)
b : - 000431
+3 : 004075

(26)  :.0009 : 13400000 (to6places)
6 : 0112
03 10222 ..
@) :0039: 30 0 0 0 0 00 (to eight places)
12 : ;39 14 20 24 24 24

06 :268 9 T T

(19}

315
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(28) .00000083: 10 0 00000 (to 8
I8 : :23111870
0009 : 115 9

29) :.000092 : 401 0 0 0 O O(toten
“13: 116 6 13 15 14 24 32 Places)

. 009 :612 54 38
G0 :2: 07 36

Places)

2: :12 31
:1:44.00 -, A complete square.

Or, taking the first three digits together at the first step, we
have:
:207: 3 6

28 : 11 1

14: 4.0 , Anexact square




L —

cube Roots of Exact Cubes

e

MAINLY BY INSPECTION AND ARGUMENTATION
(Well-known) First-Principles

(1) The lowest cubes, i.e. the cubes of the first nine natural
numbers are 1, 8, 27, 64, 125, 216, 343, 512 and 729.

(2) Thus, they all have their own distinct endings; and there
i no possibility of overlapping or doubt as in the case of
SQUATES-

(3) Therefore, the last digit of the cube root of an exact cube
is obvious:

(i) Cubeendsinl; .. cube root ends in 1;

(ij) Cendsin 25 .% C R endsin 8;
(i) Cendsin  3; .% CRendsin7;
(iv) Cendsin 4 .. C R ends in 4;

(v) Cendsin 5; . C R ends in 3;

(vi) Cendsin 6 C R ends in 6;

(vif) Cendsin 7; .. C R endsin 3;
(viif) C endsin 85 .\ C R ends i_n 2; and
(ix) Cendsin 9: .\ C Rendsin9;
(4) In other words, _

() 1, 4,5,6,9 and 0 repeat themselves 1

and 10.
(if) 2,3,7 and 8 havean inter-play of m—mptllfz:ﬁ:n;? the
(5) The number of digits in & cube i 11;.5 including a single
number of 3-digit groups in the ﬂ“gmal m .
digit or a double-digit group if there ‘E'.E“{;,
hgﬁ] The first digit of the cube-root WiLd
the first group in the cube. -y d *he last digit
(7) Thus, the number of digits, the first ﬁ'ﬁ:l;n with which Wwe
of the cube root of an exact cube arc the

s ¥
P &S

n the cube-ending;
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start, when we begin the work of o

Itracting the
C
exact cube. Ube Fot o i

ExAMpLES
Let F, L and n be the symbols for the first digiy,
and n the number of digits in the cube root of an
(1) For 226, 981, F=6, L -1 andn=>7
(2) For 4, 269, 813, F=1, L =7 and n=3
(3) For 1, 728, F=1, L =2 and n=2
(4) For 33, 076, 161, F=3, L =1 and a3
(9) For 83, 453, 453, F=4, L=7 and o =3
(6) For 105, 823, 817, F=4,1=3andn=3
(7) For 248, 858, 189, F=6, L =9 and n=3
(8) For 1, 548, 816, 893, F = LL=7and n=4
(9) For 73, 451, 930, 798, F=4, L2 and n =4
(10) For 76, 928, 302, 277, F=4, L —3 and n—4
(11) For 6, 700, 108, 456, 013, F=1, L =7andn=5
(12) For 62, 741, 116, 007, 421, F~3, L1 and n 5

(13) For 91, 010, 000, 000, 468, F=4, 1, =2 and n=35and so
on.

the Yagt 4. -
Cxact cuhf,dtg't

THE CHART-PRELIMINARY AND PROCEDURE

The procedure is similar to the one adopted by us in “Straight
Division™ and particularly in the extraction of square roots. The
only difference is that our divisor in this context will not be
double the first digit of the root but three times the square there-
of. As we know the first digit at the very outset, our chart begins
functioning as usual as follows:

M e M (2) 213 ¢ § 24
32 20 12 ; i
1 a0y s 2.

48 : 801 27 : 0
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. 21 : 400 713 (6) :
& 49 o 113 192 L 33132 e
' E: :
E -
<79 314 502
4 :

ALGEBRAICAL PRINCIPLE UTiLisen

Any aﬁl‘hﬂ]ﬁfﬂﬂl number can be put into its proper E]gehraiml
5hﬂpl3- as:
a-+10b-+100c+4-1000d etc.

Suppose we hm_fe: to find the cube of a three-digit arithmetical
pumber. ﬂlgehralcally, we have to expand (a-+10b--100c)%
Expanding it accordingly, we have:

(a-10b--100¢)* =a®+100b?+-1000000¢?4-30a%b - 300ab?

+300a%c -+ 30000ac*+- 30000b*c -+ 300000bc* 4+ 6000abe.

Removing the powers of ten and putting the result in alge-
hraical form, we note the following:

(1) The units' place is determined by a’.

(2) The tens’ place is determined by 3a®b.

(3) The hundreds’ place is contributed to by 3ab®43a%

(4) The thousands’ place is f ormred by b*4-Gabe

(5) The ten thousands’ place is given by Jac®+3b%e

(6) The lakhs’ place is constituted of 3bc?; and

(7) The millions’ place is formed by ¢* _

‘N.B.: The number of zeroes in the various coefiicients in the
Algebraical expansion will prove the correctness of t‘EI:us lill-llﬂ]}'ﬁlsp

Note: If one wishes to proceed in the reverse direction, Dnz
may do so; and, for the sake of facility’s the letters sub;ur;uﬂ
(for a, b, c, d etc.) may be conveniently put down as L, & %
etc.
ons OF THE PRINCIPLE _

s of the algebraical
us the necessary clue
ng the previous
_ﬂrgﬂﬂl‘:ﬂtﬂti.ﬂ‘nal

THE IMPLICATI

This analytical sorting of the various part

expansion into their respective places: Eﬂ:ﬁ:rmini
for eliminating letter after letter ﬂFd alFI: of an
digit. And the whole procedureis FE&i

character. Thus,
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: am the units’ place, we subtract a9 !
4 S;mriiams the last digit. R, And thay
A From the ten's place, we subtract 3a%h for a7 2
@ Eminmc the pEleI'.IIHMH.I.E digit. ek 5 and thy,
(iii) From the hundreds” place, we subtract 3az,
3L2J43LK?% and thereby climinate the
digit.
(i) From the thousands’ place, we deduct b3-+-Gabc; apng 0
N.B.:In the case of perfect cubes we have the , d'ﬂitiu“n
advantage of knowing the last digit too, beforehand, y
Some instructive examples are given below:
(1) Extract the cube root of the exactcube 33, 076, 161,
Here F=3:L=1;and n=3.
(L)L=1 » L3=]. 7 1 1
. Subtracting 1, we have 1 33 076 161

+3abt
Prepenulp

1

J 33076 16

(K) 3L*K. =3K (ending in 6) .", K =2 6
Deducting 3K, we have ] 33 0761

(3) 3LA1+3LK?®=37+12 (ending in 1)] . CR=32l
v 3endsin® o, T3 }

N.B.: (1) The last step is reall s
¥ unnecessa
known to us from the outset. ry as the first digit is

(2) Extract the cube root of the exact cubz 1728,

Here, F=1:L =2 and n~2 s CR=12
(3) Extract the cube root of the exact cube 13,824
Here F=2; L—4; and n—» ’ . CR=M
) + i
( }D}‘;‘fﬂmm& the cube root of the exact cube 83, 453*1?37_—-‘
e F=d4;L=7; and N3
(L) L=7 - 13_1343
S L3=343, 53 433
Subtracting this, we haye } u
(K) 3K ' —g3 453 1l
=K (endingin 1) « K3 4l
(113:. Euhtrac:ing 44] ™ }W
L3k Ly
: =147] i
o 1477 ends in & :j--l‘rﬂ‘g_ E‘Eﬂdinﬂ mn 7) } _'__Ej!-'-':j"}l
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NB.: Exactly as in the previous example,

ind out the cube root of the exact cybe 84,
(SJF;{CI'CF=4;L=9: and n=3 604’ 519

84
(L)L=9 - L?=729 Subtracting this o

729
K) 3L*K =243K (ending in 9) - K — ' 8460379
( )Subtracting 729 e } a1
845965
(3) 3L3J+3LK? =24374-243 (ending in 5)
S 243Jendsin2  : y=4 } s, CR =439
N.B.: As before.
(6) Extract the cube root of the exact cube 2488 58189
Here F=6;L =9; and n =3, 2488 58189
729
(L)L=9 . L3=729 -, Subtracting this, 24885 746
(K) .". 3L?K =243K (ending in 6) 486
" K=2 !, Deducting 486 ] 248852 6
(J) 3L*J+3LK*=243J+108 (ending in 6)
" 243Jends in 6 ./, J=6 ] CR =629.
N.B.: Same as before.

(7) Determine the cube root of the exact cube 105823817
Here F=4;L=3:and n=3 105823817
(L) L=3 .., L3=27. Subtracting this 7z

10582379
(K) 3L*K =27K (ending in 9) .*, K =7 } 189
Subtracting 189, we have 1058219
2 2 44| (ending in 8)
() 3L +3LK2=27J+441 (ending ] - CR=473
s I=4

N.B.: As before.

(8) Extract the cube root of the exact cube 143 055 22_7]
Here F=5; L=3;and n=3 : 143 055 >7

= ® 3= . d dUCtil’l t is =

(L) L=3 -, L3=27. de g 43055 G4

(K) 3LK =27K (ending in 4) ", K=2 ] 54
Subtracting 54, we have 143 055 1

) 3L3;+15!LK==27J—,-36 (ending in 1) } < CR .53
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J fore.
- .- Exactly as be
'f;j;rl:ind the cube root of the cube 76, 928, 30,

Here F= 4, L= 3; } The last 4 '_jfﬂits E.]'E1]h-}

and n=4. 27
1—-.,_|_\_\_‘-

25

1)L=3. L*=27. Subtracting this,

(K) LK =27TK (ending in 5) } ”

+ K=5 . Subtracting 133 N

J) ALA+3LK*=27] 4-225 (ending ]

in 9] ek I=E- = CR _=¢153

N.B.: But, if, on principle, we wish to determine them
by the same method of successive elimination of the digits, wa
shall have to make use of another algebraical expansion, namely,
of (L+K+J+4H)* And, on analysing its parts as before into the
units, the tens, the hundreds etc., we shall find that the 4th step
will reveal 3L*H+6LKJ+ K32 as the portion to be deducted. So,

(H) 3L*H4-6LKJ4+K¥=2TH 4180 30 : 09
+125=27H+ 305 (ending in 3) 2: 70
- H=4: and CR =4253 B7: 3
(10) Determine the cube root of the cube 11, 345, 123, 223
Here F=2; L=7:and n=4 11, 345 123 223
(L)L =7 » L*=343. Subtracting it, 343
11 345 12288

(K) 3L*K+ 147K (ending in 8) 588
. K =4. Deducting 588 ] 11 345 11 70
(1) LT+ 3LK®= 14774336 } 330

(ending in() » J=2
e Suhtr&cting 630, we have 1134508 4

(H) 3L*H4-6LKJ 4 K3 — 1471
. - +336
ey L47H+400 (ending in 4) } # CR = 2247
N.B.: The last

superfliouys, part for ascertaining the first digit is really

11

: }E;:::tf:iflfe i of the cube 12, 278, 428, 443
(L) L=7 L;-ﬂ';,i;d AN 12 278 428 ;ﬁ

12 278 428 lg
< K,

o e e
J12 278 428

K (ending in ()
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) 3L2J4-3LK?*=147J4-0 (ending in 1) 441
. Taed s
il 1
= Subtracting 441, we have 221535
(H) aL:H 4+ 6LKT 4K =147TH-04-0
and ends ind 7, H=2 ] * CR=2307
N.B.: As in the last example.

(12) Find the cube root of the cube 155 045 312 441
Here F=T;L=1;n=4% 355045 312 441
(L) L=1 ., L*=1. Deducting it, 1
(K) 3IL*K =3K (ending in 4) 355045312 44

+ K=8 . Deducting 24. 24
3550453122
(1) ILAT+3LK?=31+-192 (ending 192
in2) ;. J=0 355045293
(H) 3L*H4-6LKJ+K* = 3H +04-512
and endsin3  H=7 » CR=T0E1

N.B.: Exactly as above.

Note: The above method is adapted mainly for odd cubes. If
the cube be even, ambiguous values may arise at each step and
tend to confuse the student’s mind.

(13) Determine the cube root of the cube 792 994219216
Here F=9:; L=6; and n=4 792 994 219 216
(L) L=6 =, L*=216. Deducting this, _116
792 994 219 00
(K) 3L*K = 108K (ending in zero) 540

= K =0 or 5. Which is it to be? 772 994 2136
Let us take 5 (a pure gamble)!

() ILEJL3LK? = 10874450 (ending | 666
ing) . J=2or7! 7729961 47
Which should we prefer? Let Us
accept 2 (another perfect ga mble!)

(H) 3L*H4-6LKJ4K?=108H+360
4125 = 108H 1485 (ending in 7}
* H—4 or 9! Which should we L
choose? Let us gamble again
and pitch for 9! } . CR=9256

Here, however, our previous knowledge of the first digit may

LN
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come o our rescu¢ and assure us of its being 9. But the Other
were pure gambles and would mean 2X2, ie. foyr d;‘ﬁ‘mm
possibilities!

A Berter METHOD

At every step, however, the Iamhiguit}' can be remoyeq by
proper and cogent argumentation; and this may also Prove
jnteresting. And anything intellectual may be welcomed: but i
should not become too stiff and abstract; and an ambiguity i,
such a matter is wholly undesirable to put it mildly. A bette
method is therefore necessary, is available and is given below,
All that has to be done is to go on dividing by 8 until an odg
cube emanates, work the sum out and multiply by the proper
multiplier thereafter. Thus,
8) 792 994 249 216

8) 99124 281152
8) 12390535144

1 548 816 893
Here F=1; L=7:and n=4
(L) L=7 13343
Subtracting this, } lmﬂlﬁﬁg
154881655
(K)-3L*K = 147K (ending in 5) 735
. K=5. Deducting 735. } ‘5‘”523%
() ILAT43LK® = 14771 525 (ending in
?L-— T=1 Deducting 672, we have: 1548 742
(H) +uﬂ§:i§;ﬂ+ﬁa =147TH+-210 . The cube
Hop 1335 (ending in 2) root is 1157

Eﬂd 1-- C arie
N.B.: Here too, ﬂﬁt of the original cube =8 x 1157 <9256

| - Sisyera
already known 1o us. el 6L unnecessary as the first digit 13

(14) D‘Etﬂﬂ‘ﬁne

Here F ﬂm cube root of the cube 2, 840, 362, 499, 528

|L='=2;
(LYL=2 - L:I::Eﬂl'ld n=35

2840 362 499 523
5840 362 499 5%

DE{iucting this, we have }
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12K = 12K and ¢nds in 2

(K) 3 K =1 or 6! Let us take 61 —_m 12

Deducting 2K 2840 362 49123
B

FLAT-ILKE = 1274216 (endin

)] S e E 2840 362 476
Let us take 1!

4216 = 2H 238 (ending in 6)
= H=4 or9:Let us take 4 |

(G) We necd not bother ourselves
about G and the expansion of

(a+b-4c+d<-e)® and so on.
Obviously G=1 S CR =14162
But the middle three digits have been the subject of uncertainty
with 2% 2% 2 =8 different possibilities. We must therefore work
this case out by the other—the unambiguous—method.
or8:2840362499528

(H) SLAH+6LKI+K? = 12H 472 }

355045312441

Here F=7;L=1;and n=4
(L) L=1.. L3w] } 355 045 312 4—4%

. Subtracting this, we have

355 045 312 44
(K) 3L*K = 3K (ending in 4) } - Sli_id-
s, K =8  Subtracting 24, 355 43
(1 3Lty 4-3LK2=3J4192 92
andendsin2 .5, J=0 W E
.. Subtracting 192,

(H) 3L2H +6LKJI+K? = 3H+0+512 N
andendsin3 ;. H=7 14.1-62
CR of the original expression= e
(15 Find out the 12-digit exact cube whose last four digl
6741.

SRR T 1
Here F=?: L =1; and n=4 zii 1
=] =10 btracting it
(L) L=1 j, 12=1., Su %
(K) 312K =3K and ends in 4 } __E._j_-—-—r
K =8 » Deducting 24-
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(J) 3LA1-3LK?*=3J4-19 and ends . I
in5., J=1 } “ui8s
" Subtracting 195, we have ' E‘T‘I‘R

(H) 3L*H4-6 LKJ+XK* =3H 448

512 =3H - 560 and ends in 0. } 5T
o aHSS 5 GanTle onun
N.B.: As we did not know the first digjt beforehang 18]
steps were really necessary. 1, all thy
(16) A 13-digit perfect cube begins with 5 and epg

Find it and its cube root. > With 034y,
Here F=1;L=1; and n=5. 05
(L) L=1 7, L*=1. Deducting it. s }

05§
(K) 312K =3K ., K=8 24
.. Subtracting 24, we have ] Y e
(9) 3L+ 3LK2 =37+ 192 213
andendsin 3 , J=7 T —
<« Deducting 213, we have + 9
(H) 3L*H-+6LKJ+K3=3H-4336
+512=3H--848 and ends in 9 }
cil=T
(G) And G=1 ;. CR=17781
And the cube=

177813
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cube Roots (General)
J—

Having explained an interesting method T
roots of exact cubes can be extracted, we now b i t?: c:iubr:
with cubes in gem:ral, i.e. whether exact cubes or not. As Eﬂ]i
numbers cannot be perfect cubes, it stands to reason that tlh:re
should be a general provision made for all cases. This, of course
there is; and we now take this up. : ,

F1rsT PRINCIPLES

It goes without saying that all the basic principles explained
and utilised in the previous chapter should hold good here too,
We need not, therefore, reiterate all that portion of the last
chapter but may just, by way of recapitulation, remind ourselves
of the conclusions arrived at and the modus operandi in question.

THE SEQUENCE OF THE VARIOUS DIGITS

(1) The first place by a°

(2) The second place by 3a*b

(3) The third place by 3ab®4-3a*c

(4) The fourth place by 6abe+b?

(5) The fifth place by 3ac?+3b%c

(6) The sixth place by 3bc®

(7) The seventh place by ¢*; and so on.

. . HE
THE D1VIDENDS, QUOTIENTS, AND REMAINDE

(1) The first D, Q and R arc available at SIER"

(2) From the Eﬂgmd dividend, no deduction 15 10 be made-
(3) From the third, subtract Jab®

(4) From the fourth, deduct 6abc b

(3) From the fifth, subtract 3act+3b°
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(6) From the gixth, deduct 3bc®
(7) From the seventh, subtract ¢*: and s0 on.

Mopus OPERANDI

Let us take a concrete example, namely, 258 474 gs3

and
the modus operandi actually at work 258 : 4 N;:;
step by step 108 : : 42 100
s B A
. ﬁ 4 3

e T
(@) Put down 6 and 42 as first Q and first R by mere Vilokanay
(inspection).

(&) The second Gross Dividend : 258 : 4 74853
is thus 424. Don’t subtract 108 : : 42 100
anything thereform. Mere- . 6: 3 7

ly divide it by 108 and put
down 3 and 100 as Q. and

R,

(¢) So, the third Gross r 258 1 4 T 4893
Dividend is 1007. Subtract 108 : 42 100 89
therefrom 3ab® (j.e. 36 . 6 37

3%, j.e. 162). The third
actual working dividend
therefore is 1007 162 =845, Divide this by 108 and se
down 7 and 89 as Q, and R,

(d) Thus, the fourth gross 258 : 4 7 485
dividend is 894. Sub- 108 - . 42 100 89 111
tract therefrom Gabc- + :

b =756-+-27 < 783). AL —
S0, the fourth actual working dividend is 894—783=111
{R‘r"id& this again by 108 and put down 0 and 111 as Q, an

i

(€} Our next gross dividend is 258 :4 7 4 8 5¢
now 1118. Subtract there- 108 - :42 100 89 111 47
from 3ac*+-3btc =882+ 189 L g
= 1071 Therefore our fifth 50638 57 070 1

actual working dividend j ity ul
5 47. v and P
down 0 and 47 45 Qg and R, Divde-ic oy 18



Cube Roors (Generar

f) Qur sixth gross divi- 258 . 4 329
( dend is 475, Subtract 108 . ) 7 4 5is
therefrom 3be?( = 441) / 00/89/11) 47] 34

go, our Q and R, 6 : 39 00

now are 0 and 34, (complete cube)

Our last gross dividend 15 thus 343,
ﬁéﬂfmm and set down 0 and 0 as our éf a::}j Etrac; C' (=343)

This means that the given number is a perfmt? cube, that th
work of extracting its cube root is over and that the Eutl:e. :
§37.

N.B.: Proof of the correctness of our answer is, of ¢
readily available in the shape of the fact that 637 is the given
pumber. But this will be too crudely and ecruelly laborious.
Sufficient proof, however, 1s afforded by the very fact that, on
going into the decimal part of the answers, we find that all the
guotients and all the remainders are zeroes.

An Incomplete cube is now dealt with as a sample:

Extract the cube root of 417 to 3 places of decimals.
Here the divisor is 147.

417. : 0 0 0 0
147 : + 74 152 155 163

+ 7. 4 T 1

{a) Here Q, and R, are 7 and 74
(b) . Thesecond gross dividend is 740. No subtraction is
required. ., Dividing 740 by 147, we get 4and 152 as Qs
and R,. + !
(¢) = The third gross dividend is 1520. Subtracting 3ab
( = 336) therefrom, we have 1184 as our third actual :n:l;;
ing dividend. We divide it by 147 and put down7 an
as our Q and R,.
(4) Our fc::urath grﬂ;E dividend is 1550. We E;hmﬂ:ﬁl%ﬁE
b (= 1176464 = 1240) therefrom, obtain 058 Ci
actual working dividend, divide it by 147 &
and 163 as our Q, and R,
(&) Our next Eross dividend
3b% (= 1029+ 336 = 1365) therefrom:
actual working dividend, divide 1t by

Toot is

L P
! _ We subtract jac*+
is 1630 o 265 as our fifth
147; and so o0
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Note: The divisor should nor be too small. Its ultra-smalipe
will give rise to big quotients sometimes of several digits, the i:?_
sufficiency of the remainders for the subtractions to be made ang
other such complications which will confuse the student’s mingq,

In case the divisor actually happens to be too small, two simple
devices are available for surmounting this difficulty.

(¥) Take the first four or 5 or 6 digits as one group and extract
the cube root. For example, suppose we have to find out
the cube root of 1346, 085. Our chart will then have to be
framed thus:

363 : 1, 346 : 085
: 1331 : 15

11

Let us now take an actual concrete example and apply this
method for extracting the cube root of 6334625

: 6334 : 6 2 5
972 : 5832 : 502 166 312

18 : 5 0 p SR

(@) Q,=18; R=>502; and Divisor (D) =972.

(5) No subtraction being needed at this point, divide 5026 by
972 and put down 5 and 166 as Q, and R,.

(¢) Our third gross dividend (GD) is 1662; subtract 3ab®
(=1350) from 1662, divide the resultant. Actual dividend
(AD), i.e. 312 by 972 and set down 0 and 312 as Qs and R,

(d) Our next GD is 3125. Subtract 6abc+b® (=0+125=125)
from 3125, divide the AD (3000) by 972 and put down 2
and 1056 as Q, and R,; and so on.

Or, Secondly, multiply E (the given expression) by 23, 3¢, 4* or
5% etc., as found necessary and most convenient find the
cube root and then divide the CR by 2, 3, 4, 5 etc. For
instance, instead of taking 3 as the divisor, take 3 X4
(=3x64=192), find the cube root and divide it by 4

Here again, a concrete example may be worked out by both
the methods:
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FIRST Methop 331
A Q=1 R l;and D=3 .
A ;21000
> 114 10 9
T AT
1l 2 0§

() Now, GD =AD =

and R..

(€) The third GFJ i5 40. From this subtract 3ahe (=12)
this subtraction, the AD is 28. Divide this e ). After
down 6 and 10 as Q; and R.. ¥ 9 and put

(d) The fourth GD is 100. From this deduct abct-b? (=77
—80). The AD is 20. e

Now, as for dividing this 20 by 3, the directly apparent Q, and
R, are 6 and 2. But the actual quotient and remainder are difficult
to determine because of the smallness of the divisor and the in-
sufficiency of the remainders for the next subtractions and a good
number of trial digits may fail before one can arrive at the correct
figures! This is why the other method is to be preferred in such
cases. And then the working will be as follows:

Multiplying 2 by 53, 250 : 0 0 O
we get 250. 108 : + 34 124 196 332

10, Divided by 3, it gives 2 and 4 as Q
z

6 2 9 " S

(@) Q, and R, =6 and 34

(b) E;=340. Dividing this by 108, we have Qz= 2and R, = 11;:4.

() 3ab?=72. Deducting this from 1240, we get 1168. Dividing
this by 108, Q;=9 and Ry= 196 . e

(d) 6abc4-b? = 64818 = 656 ?"]1:: Wnrhngh ﬁw:l e:g
— 1960 — 656 — 1304. Dividing this by 108, we have A
and R, =332 -, The CR= 6.299— s
. Dividing by 5, the actual cube root = 1.

. 0
(2) Let us take another 1500 iy 169[" 235[] 400 339
concrete example, 1. 363 : e i Wl (UG L
34/12. We multiply ___._!_l.-—-—-—-""'_'_'_'_'_-_-_
12 by 5* and put first four

ke the
1500 down as the total dividend. And we ta

digits as one group.



Vedic Mathematics

332
- 11 and R:=|55; TN

g Iﬁq__‘}u h-?l 363_,‘ Wi lEI."-’E* rﬂ= =238
) D s - Working Dividend =2380— 535 _ )
(c) . Dividing it by 363, we have Q;=4and Ry =400
i) E;;bc-i-h*: 105664 = 1120. Deducting this from 4000,
{ we get 2880. Dividing this by 363,Q,=Tand R =339

- The CR=11.447 et

= The cube root of the original E=2.289, ,,

gome more examples may be taken:

(a) Thus Qy*

17T D, =11 L: T 2 3

(1) (a) E=1728; Q; =13 )
D=3:and R;=0 3: :01 o
:1:2 0 0
(exact cube)

(b) 7 divided by 3 gives 2and 1 as Q. and R,

(¢) Third Gross Dividend = 12; 3ab®*=12; », Actual dividend
=0 5 Q3=ﬂ and R.a=ﬂ'

(d) Fourth gross dividend =8; babc+b*=0-4-8=8 . Sub-
tracting the latter from the former, Q=0 and R, =0

. The CR =12
N.B.: The obvious second proof speaks for itself.
(2) (a) Here E = 13824; 13 : 8 24
Q=2;and R, =5 12 & 51066
D=12 :2: 400

b
(b) 34 gives Q;=4; and R, =10 (Perfect cube)

(¢) Gross Dividend = 102: 3ab?— 96,

- Actual dividend = 6. Divided by 12 this e o
' this gives Q=0
and s ¥ 12, this gives Q,

() GD=64; Gabe+b7~0464 - AD=0 . Q,—0 and
o R“;“ . The CR is 24,
ere =3 g

{a] Q =313| ﬂ?ﬁ, ]EI. Ql =3; D '—TIT: and R1=E'

1M R, =6 33: 076161

27: :664200

3+ 21000

(5) GD = Ay complete cube)-
=60: Div: ( P

R, Divided by 27, this gives 2 & 6 as Qs 209
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()GD isnowG7; 3abi-36 . Ap o
this givesus land das Quand R,

J) GD is 46; 6abc+b" =36 +.8 . 44 & AD - s

|:: h".,l' :'I,.T, this g[\"ﬂﬂﬂ ﬂndlﬂﬁ Qi i R‘l D e 2. .I'.'Ln.dq di"l']dﬂd

©GD is 213 3acti3bc—9. 1z,

] ] & I-‘- |I|!'|. == »
di"l’ldﬂd b}i' E:,l" tI"I.JE EIYES 0 .und ﬂ.&ﬁ Q.E and EED D' EI'I.I:L

(f)GDis 6;3bc*=6 -, AD =0. And, divided b -
gives us Dand 0 as Q, and R,. ¥ 2 O

(g) GD =1; ¢*=1; AD=0. Divided by 27, this gives us 0 and
0asQ;and R, . The CR is 321.

N.B.: The second proof is clearly there before us. :

(4)E=101 01: 00 0 0
48 :  :37 82 148 112 40

—

{E}Ql=;4;R1=3T;andDm48 4+ f 590 5

(b) GD=AD =370; and, divided by 48, this gives us 6 and &2
a3 ":!3 and R: ;

(c) GD =820; 3ab® =432 AD =388, and, divided by 48,
this gives us 5 and 148 as Q, and R,

(d) GD =1480; and 6abc+- b*=T720-+4216 =9;rﬁ:
=+ AD=544. And this, divided by 48, gives us 9 and 112
as Q and R,

(e) GD 5 1120; and 3ac?+-3b% =3[I‘D-I-5f!ﬂ =840 4
= AD=280. And, divided by 48, this gives Uus 5 and
as Q; and R;; and so on.

(5) E=29791

(b) GD = AD =27; and, divided by - :19 ETDF 1
27, this gives us 1 and 0 2s Qs e
and R,. (complete cubg)

() GD=9; and 3ab=9; /. AD=0:an¢ diviiif{:_ E{:E; ’i;?ﬁ
gives us 0 and 0 as Q, and Rs e WX —

N.B.: The proof is there before us as usual.

3
(6) The given expression (E) =83, 453, 43
(@) Q—4; R; ~19;and D = 48.
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(B) GD =AD = 194, 831 A4 5§ 3 4 ;
And, divided by 48 : : 19 50 61 32 4 33
48, this gives us ;4 3 T, D%ﬁ_‘
Jand 50 as Q, and R, e

(c) GD =505; and 3ab® = 108 .. AD=397. And, divid
48, this gives us 7 and 61 as Q; and R4

(d) GD =613; and 6abe+b?=504+27=3531 " AD =g pn4
divided by 48, this gives us 0 and 82 as Q, & R, J

(¢) GD=824; and 3ac®+-3b%c=588+189=77T . AD._4
And this, divided by 48, gives us O and 47 as Q, & R,

(f) GD—3bct=475—441 =34. . Qq -0 and R, =34

(g) GD=343;and ¢*=343 ., AD=0 " Q,=R,=0

». The CR is 437.

N.B.: The proof is there as usual.
(7) E=284, 604, 519

eqd ]3:,'

(a) Q,=4; 84 : 6 0 4 5 1 9
D=48; 48 : 2062 80 129 80 72
and R, =20 4 : 39.0 0 O (perlect cube)

(b) GD = AD =206. And, divided by 48, this gives us 3 and
62 as Q, and R,

(¢) GD=620; and 3ab®*=108 *, AD=512. And, divided by
48, this gives us 9 and 80 as Q; and R,

(d) GD =804; and 6abc4b*=648-4-27 =675 . AD=129,
And. divided by 48, this gives us O and 129 as Q, & R,

() GD=1295; and Jac*+3b% =9721-243 - 1215 », AD=280.
And, divided by 48, this gives us 0 and 80 as Q, and
Rs

(f) GD=801;and 3bc®=729 », AD=72. And, divided by
48, this gives us 0 and 72 as Q, and R,

(g) GD=729; and C3 =729 » AD () s Q,=0and R,;=0

. The CR is 439

N.B.: The proof is there as usual.
(8) E=105, 823, 817

(@) Qy=4; - R IR R
Eﬁ-.-#l; 48 ; :41 82 90 56 19 2
and D48 i 4 730 0 0(complete cube)

—
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32as Q. and Ry WIS gives us 7 ang
£) GD =822 and 3ab*=588 . Ap_914. n.
: 48, this gives us 3 and 90 as Q, and R, 34; and, divided by
=003; and oGabe-tbr= |
(d) GD =903; Fb'=5044343-847 .
And, divided by 48, this gives us;:m and :5 i B
(¢) GD=568; and 3ac*+3b%~ 108--44] — 549 E-Q;S R
And divided by 48, this gives us zero and Igm; l.Q Y ; 19,
(f) GD =191; and 3b¢— 189 -, AD~2; and, divided by 8
this gives us zero and 2 as Q; and R, Y 45,
(2) GD=27;and C*=27 *, AD=0 ., O,=0and R.—0
2. The CR =473 ' "

N.B.: The proof is there as usual.

(9) E =143, 055, 667 43: 0 5 5 667
75: :1830 20 1752

:5 ¢ 23.0 0 0 /(exactcube)

(@) Qy=5;R,;=18;and D =T5

{ﬁ'} GD=AD=180; and, divided h]l' 75, this gi‘.’-E:ﬂ. us 2 and 30
as Q. and R,

(c) GD =305; and 3ab®*=60 ., AD=245; and, divided by
75, this gives us 3 and 20 as Q, and R,

(d) GD =205 ; and 6abc-+b*=180+8 =188 5, AD=17. And,
divided by 75, this gives us 0 and 17 as Q, and R,

(¢) GD=176; and 3ac*+3b'c= 1354+36=171 ~ AD=5.
And, divided by 75, this gives 0 and 5 as Q; and R

() GD =56 and 3bc?=54 5, AD=2; and, divided by 75,
this gives 0 and 2 as Qg and Rg.

(2) GD =27 and ¢*=27 ., AD=0 ., Q=0 and R,=0

.+ The CR 15 523

N.B.: The proof is there as usual.

§ 9
(10) E=24 189. ;Hag s R BB

§: 2 ¥ 0 ﬂ{pﬂ:rfmﬂtauhc}
: - i _.___.—'_-_'_'_._
(@) Q,=6;R,=32;and D= 108

(5) GD = AD = 328. And, divided by
112 a5 Q, and Ry

108, this gives us 2 and
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(¢) GD =1125. and 3ab*=72 » AD-= ins3: and, diyig !
108, this gives us 9 and 81 as Q, and R,. “2 by
(d) GD -818; and Gabc-b? — 648-L8 - 656

D
And, divided by 108, this gives 0 and 162 ag Qvand R e
(¢) GD=1621; and 3ac*—3b% — 14581 108 — 1566 = a'":l}H

33. And, divided by 108, this gives us 0 and 55 a5 Q,
R&d

(f) GD =558; and 3be* =486 ., AD=72; and, div
108, this gives us 0 and 72 and Q, and R,

(8 GD =729; and ¢?=729 *, AD=0; Q;=0and R, =0

«. The CR is 620

N.B.: The proof is there as usual.
(11) 11, 345, 123, 223

Note: The cube root in this case being of four digits, the
method obtained from the expansion of (a+b-c) will naturally
not suffice for this purpose; and we shall have to expand
(a-+b+c--d)* and vary the above procedure in accordance there-
with. This is, of course, perfectly reasonable.

ang

THE SCHEDULE oF DiGITS

The analytical digit-schedule for (a--b-Lc+d)® now stands as
follows:

(@) First digit (9 zeros) = a’—

(&) Second digit (8 zeros) - Jatb—

(¢) Third digit (7 zeros) =3ab?+3a%c

(d) Fourth digit (6 zeros) =6abc+b*+3a3d

(e) Filth digit (5 zeros) =6abd 4+ 3ac?+-3b%c—

(f) Sixth digit (4 zeros) = 6acd+ 3bc2- Ib*d—

(2) Seventh digit (3 zeros) = 6bed + 3ad?4-c*—

(f) Eighth digit (2 zeros) = 3bd2-+ 3ctd—

(7} Ninth digit (1 zero) — 3cd’—

(/) Tenth digit (no zero)=d*

CONSEQUENT SUDTRACTIONS
(1) Q, and R, by mere inspection.

(2) Q, and R, by simple division without any subtraction what-
EOCVer,

(3) From all the other gross dividends, subtract
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(3) 3ab?®
(4) 6abe-b?
(5) Gahd 4 3ac?-- Ib%c
(6) 6acd-+3bc®--3b*d
(7) 6bed--3ad?®-4-c?
(8) 3bd24- 3¢
(9) 3ed?

(10) d9

respectively, in order to obtain the actual working dividend and
thence deduce the required Q and R.

Note: Tt will be noted that, just as the equating of d to zero in
(3+-b+c+-d)* will automatically give us (a+-b-c)* exactly so
will the substitution of zero for d in the above schedule give us
the necessary schedule for the three-digit cube root.

As we go higher and higher up with the number of digits in
the cube root, the same process will be found at work. In other
words, there is a general formula for n terms n being any positive
integer; and all these are only special applications of that formula
with n equal to 2, 3, 4 and so on. We shall take up and explain
this general form of the formula at a later stage in the student’s
progress.

In the meantime, just now, we explain the application of the
(a+4b+-c-+d)® schedule to the present case.

APPLICATION TO THE PRESENT CASE

11 : 34 5 123 22 3
12 : :39223759 7669 62 34

+2 :247.0 0 0 0 (exactcube)

(@) Q,=2; R, =3; and Divisor is 12

(b) GD =AD =33. Dividing this by 12, we get Q,=2 and
R,=9

(c) G;}=94; and 3ab®=24. - AD=T70 ,Q,=4 and R,=22

(d) GD =225; and 6abc+b?=96+8=104; . AD=I2I
s Q=7 and Ry=37

(¢) GD=371; and 6abd43ac®+3b%c= 168 +-96-1-48 =312.
. AD =50 *, Q,=0and R;=39.
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(/) GD=592; and Gacd+3bc?-+3b*d =335 g'ﬁ'i-l#ﬁS
D =76 . Q;~0 and Ry=T76. I

(g) GD=763; and ﬁbr:rl—[—33d2+r:,===.,335+294_|_m:=694
-, AD=69 ., Q;=0and R;=69

(1) GD = 692; and 3bd*+3¢*d =294--336 =630 . i
s Qy=0and Ry=062

(i) GD =622; and 3cd*=388 °, AD=34 - Q,=0 and g,
=3

(j) GD=343;and d*=343 , AD =0, Q;=0 and R, 0
. The cube root is 2247

N.B.: The ocular proofis there, as usual. This is the ugyy
procedure. There are certain devices, however, which can help
us to overcome all such difficulties; and, if and when a simpl,
device is available and can serve our purpose, it is desirable for
us to adopt it and minimise the mere mechanical labour involy.
¢d and not resort to the other ultra-laborious method.

The devices are therefore explained hereunder:

THE FirsT DEVICE

The first device is one which we have already made use of,
namely, the reckening up of the first 4, 5 or 6 digits as a group
by itself. Thus, in this particular case:
: 11, 345 1 2 3 2 2 3
1452 : 10 648 : 697 1163 412 363 62 34

22 4 7. 0 0  0(complete cube)

(@) Qu (by the same process) is the double-digit number 22;
R;=697; and D =1452

(9) GD=AD~6971; and, divided by 1452, this gives us 4
and 1163 as Q, and Ry

(¢) GD=11632; and 3ab?= 1056 » AD- 10576; and, divided
by 1452, this gives us 7 and 412 as Q;and R,

(d) GD =4123; ang 6abe-b? — 36961 64 = 3760 -, AD=363;
and, divided by 1452, this gives us 0 and 363 as Q, and By

(©) GD =3632; and 35004 3520 32344336 3570 . AD=

:ISE; and, divided by the same divisor 1452, this gives W
LEr0 and ﬁz as Q‘ and RE
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(/) GD=622; and 3bc?=588 + AD =34, _
R0 S0 Q=0 and
(g) GD =343;and € =343 », AD=0 - Q;=0and R, =0
= The C.R. — 2247 J g

N.B.: (1) And the proof is there hefore us, as usual.

+ (2) By thus device, we avoid the complication caused by shift-
ing from (a-+-b+c)? to (a+b+e+dp. T, however, suffers from
:thc drawback that we have first to find the double-digit Q, cube
it and subtract it from the first five-digit portion of the dividend
and that all the four operations are of big numbers.

SecoND DEVICE

This is one in which we do not magnify the first group of
digits but substitute (c+-d) for c all through and thus have the
same (a-b-c)® procedure available to us. But, after all, it is
only a slight alteration of the first device, whereby, instead of a
two-digit quotient-item at the commencement, we will be having

. exactly the same thing at the end.

| The real desideratum is a formula which is applicable not only
to two-digit, three-digit, or four-digit cube roots but one which
will be automatically and universally applicable. But we shall go
into this at a later stage of the student's progress.

In the meantime, a few more illustrative instances are given
hereunder for further elucidation of—or at least, the student's
practice in, the methods hereinabove explained:

(1) E=12, 278, 428, 443.

Here too we may follow the full procedure or first ascertain
the first two-digit portion of the cube root of 12, 278, treat the
whole five-digit group as one packet and extract the cube root of

the whole given expression in the usual way. The procedure will

then be as follows:

(i) Single-digit method:
12: 27 8 42 8 44 2
12: :46132722334 3 M

3 307.0 0 0 0 (perfect cube)

(@) Q,=2; R,=4;and D=12
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(b)) GD=AD=42 ' Q=3 and R.,=
(¢) GD=67; and 3abt= 54; 5. AD=13 Q amqu
(d) GD =138; and 6abc+b*=0+-27 =27 - i B
=T and R;=27 v Qy
(€) GD=274; and  6abd+-3ac®4-3b%c=252.¢
. AD=22 . Q,=0and R;=22
(/) GD —222; and 6acd+3bct+3b%d =0-+-0+189 . Ap %
s B Dand R;=33
(g) GI'J 338; and 6bcd+-3ad*+c*=0+-2944-0=294 - ap
=44 5, Q;=0and R,=44
(F) GD=444: and 3bd®4-3cid=44140=441 ; AD-_3
S Qg=0and R;=3
(i) GD=34; and 3cd*=0 , AD=34 .. Q;=0 and R,=34
(/) GD=343; and d*=343 ., AD-={] Qi =0and R, =0

. The CR = 2307
N.B.: The proofis before us, as usual.

(fi) Two-Digit method:
Preliminary Work 5 e
12 : : 4

T0=25,,

*, Q, (of two digits) is 23;

12278 : 4 2 8 44 3
1387 : 13167 : 111 1114 33 338 3 34

23 : 0 7. 0 00 0

(@) Qq (of two digits)=23; R,=111; and D = 1587

(6) GD=AD=1114 », Q,=0;and R,=1114

(¢) GD =11142; and 3ab*=0 [, AD=11142  Q,=7 &
R,=33

(d) GD =338; and 6abc+b*=0 , AD=338 . Q,=0 &
R,=338

{eJGDanass-fl; and 3act13b%c=3381L0=3381 -~ AD=3
S Qs=0and R, =3

(f) GD =34; and 3be?—0 », AD 34 - . Q=0 & R;=34
() GD - 343 anddhsau SLAD=0, Q,=0and R,=0
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- The CR is 2307 341

AL B The prroef 18 before us, ag usual,

(i) Sigledigie method:
6 9 28 3¢

E L2 RO 2 2 7 7
35 :I:JJ‘-I'“‘-;"ESQMEE'IEE
4: 2 § 3
2 3 0 0 0 0(Exact cubs)
(@) Qu=4:Ry=12;and D=3 N

() GD=AD=129 ", Q.=2and R,=33

(¢) GD =332; and 3ab®=48 , AD=284 , Q,=5& R,=44

() GD =H8; & 6abc-b?=240--8=248 AD =100
* Q=3and R;=36

() GD=3563: & 6abd < 3ac? + 3b%c=1444-300-1-60 = 304
s AD=39 - Q;=0and R;=59

(/) GD=590; & 6acd -+ 3bc®+-3b*d =36011304-36=346
:- AD&“; .... QE =ﬂ 3.11!.'1 R‘Il“'qh1I

() GD=442; and 6bed - 3ad? L3 =180L1108-+125=413
s AD=29;: . Q,=0andR,=2%

{f) GD=292; and 3hdi-3cid =544225=279 ., AD=13
o Qg=ﬂaﬂd REHIE

() GD—=137; and 3cd®=135 . AD=2 . Q=0 ard
R,=2

() C:Dmﬂ; and d*=27 .. AD=0 . Q=0 and Ry, =0
». The CR =4233

N.B.: Proof as usual.

(ii) Double-digit method:

- 9
or, secondly, 43 & « 12 33
X Q, (double-digit)=42 TT_—
L
2
.qga0g: 3 0 2
5292 : 740 88 : EM—
3 0.0 0

42 :__5?___‘___,.‘!—-#

{a) Q,=42; R, ~2840; and D= 5292
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(3 GD=AD=28403 °, Q;=5; and R,=1943
() GD = 19430; and 3ab®=3130 ;, AD = 16289

+ Q,—3and Ry=404
') GD =4042; and 6abe+-b*=3780L 125 = 3905 -
o » Q,=0and R =137 L ADay,
(¢) GD =1372; and 3ac®+-3b%c=1134-1-225-1350 + ap 1

s Qs=0and Ry=13 =13
(f)GD=137; and 3bc*=135 ;, AD=2 ", Q,=0angd B,
(£)GD =27;and ¢*=27 , AD=0; Q;=0and R, =0

. The CR is 4253

N.B.: Exactly as above.
(3) E=353, 045, 312, 441

(i) Single-Digit metlod.
e f 4 53 31 2 4 4]
147 12 12028 138 39 3519 2 0

—

7: 0 & 1.0

(@) Q;=7; R;=12; and D=147
(6) GD=AD=120; .. Q.=0and R,=120
(©) GD=1204; and 3ab®=0 ., AD=1204 ; Q,=8 &
R;=18
(d) GD =285; and 6Gabc+-b*=0 , AD=285; Q,=1 and
R, =138
(¢) GD=1583 and 6Gabd--3actt3blc=0+1344-0=134
5 AD=39 . Q.—0and R,=39
(f) GD =391; and 6acd+4-3be*+-3b%d =336-010=336
S aAD=35" Q,=0and R, =355
(§) GD=552; and 6bed+-3aditci= 0 -+ 21 + 512 = 533
5 AD=19 , Q;=0and R.=19
() GD=194; and 3bd®+3c*d=04-192=192 ;. AD=2
< Q=0 and Ry=2
() GD=24; and 3cd2=24 -, AD=0;Q=0and R=0
(J)GD=1;and d*~1 » AD=0, Qm0and R=0
. The CR is 7081
N.B.: As above,
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(i7) Double-digit methg,q- 343
: 355045 - 1 I
14700 : 343000 : 12045 2853 3, zqﬂ 414 |
0
. ___-_'_-—-—-_._________'
70 - 8 1.0 o

(@) Qu (of 2 digits) =70; R, = 12045; and b 137
() GD =AD =120453; Qu=8 and R,~ 2553
(¢) GD = ;and 3ab®=13440 - L2 :
and R;=391 AD=13091. 2 Q=1

(@) GD =3912; & 6abeLb® <3360
s Qu=0and R;=40

(¢) GD=404; & 3ac®+ 3b% = 2104192=402 » AD—2
s Qy=0and R;=2

(f)GD=24; and 3bc?=24 *, AD=0 , Q,=0and R,=0
(g)GD=1;and ¢*=1 ., AD=0_, Q,=0andR,=0
- The CR is 7081
N.B.: As above.
(4) E=792, 994, 249, 216

+512=3872 + AD-40

(i) Single-Digit method.:
792 - 9 9 4 2 4 9 216
243 : @ 63 153 216 158 199 152 72 56 21
9 2 56.0 000

(@) Q,=9; R, =63;and D=243
(b)) GD=AD=639 ., Qu=2;and Ry=153 ¢ o
(c) GD=1539; and 3ab*=108 . AD=1431 . Q;=

S . AD=1616
(d) GD=2164: & 6abe-b?=540+8=548 .. =

S, Qu=6and R,=158 A rer
(€) GD: 1582 .;muli'l ﬁabd—l—ﬁac‘lrl—i’»:::;;= 648467560

. AD=199 -, Q;=0and R;= 73 1842
(f) GD =1994: and facd-1 3bci—+ 3bid = 1620-+130

- AD=152 5 Q,=0and R,.-:-If;z
(8) GD=1529; & Ghed + Bad’j; - ]

vo AD =T 5 =0 and Ry= . AD=5
() GD=722: & Q;hdi+ 3cid =216-+430= 666 .

o Qg—0and Rg— 56

360-+972+125=1497
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() GD=561; and 3ed®*=540 . AD=2 R,

R,=2]
(j) GD=216; and d*=216 [, AD-=0

Rw‘:ﬂ

=) g

" Qu=o fng
>, The CR=59256

N B.: As above.

DoupLE-DIGIT METHOD

o © Qu(of two digits) is 9
243 : 63153 : 92% = 778688, And D=15392

Qo 2

792994 - 2 4 9 21 5
25392 : 778688 : 14306 16102 1772 1044 56 21

22 3 60 0000

(@) Q;=92; and R, = 14306
() GD=AD=143062 . Q,=5;and R,=16102
(¢) GD=161024; and 3ab?=6900 -, AD = 154124 S Qu=6;
and R,=1772
(d)GD=17729; and 6abc+-b®=16560 L 125— 16685
s AD=1044 s Q,=0and R,=1044
(e) GD=10442; and 3ac®43b% =9936-1450 — 10386
S AD =56, Q;=0and R, =56
(f) GD=561; and 3bc*=540 *, AD =21 S Qe=0&R,=21
(8) GD=216;and ¢*=216 ;, AD=0 », Q,=0 and Ry=0

- The CR is 9258

N.B.: As above,

Note : It must be admitted that, although the double-digit
method uses the (a+-b--c)* schedule and avojds the (a+b+c+df
One, yet it necessitates the division, multiplication and sub-
fraction of big numbers ang 1s therefore likely to cause moré
mistakes. It ig obviously better and safer to use the (ﬂ+b+¢+dja
and deal with smaller numbers, .

In this particular Case, however, as the given number ter™"
nat;: 1 aneven number angd ie manifestly divisible by 8 aij
ﬁ:khps 64 or even 512, we can jn this case utilise a third mﬂﬁfng

has dlready been explained in the immediately Prece 2
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chapter, namely, divide out by 8 and its powers and thus diminish
the magnitude of the given number. We now briefly remind the
student of that method.

THIRD METHOD
8:7 92 994 249 216
8 :99 124 281 152
8 : 12 390 535 144
1, 548, 816, 893

:1: 5 4 8 8 1 6 8 9 3
3: ¢ 0 2 6 16 36 55 74 76 34

:1: 1 5 7 00 0 0

(@ Q,=1andR,=0
() GD=AD=05 ., Qs=1and R,=2
(c) GD=24; and 3ab*=3 ', AD=21 , Qy=5and R;=6
(d) GD=68; and 6abc+b3=3041=31 ;, AD=37 >, Q,=7;
and R;=16
{¢) GD=168; and 6abd-}-3ac?-}3b%=42+475415=132
o AD=36." Q5=0 and R5 =36
(f) GD =361 ; and 6acd+3bc?+3b%d =2104-754-21 =306
. AD=55_, Qs=0and Ry=355
(g) GD = 556; and 6bcd +3ad?+-c®=210+-147-125=482
s AD=74 ., Q,=0and R,=74
(®) GD=748; and 3bd?+3c?d=147+525=672 ., AD=76
. Qg=0and R;=76
() GD=769;and 3c¢d?=735 .. AD=34 . Q=0; and
Ry=34
(j) GD=343; and d®=343 [ AD=0 ., Qu =0; and
Ryo=0
. The C.R. (of the sub-multiple) =1157
. The C.R. of the given number =9256
Or, Fourthly, the derived sub-multiple may be dealt with
(by the two-digit method) thus,
1548 : 8 1 6 8 9 3
363 : 1331 :217 363 265 221 76 34

11 : 5 7 0 0 0




| T, i it . o o o G

(@) Qu=11; R;=217; and D =363
(0) GD=AD=2178 ., Q,=5and R, =363
(¢) GD=3631; and 3ab*=825 [ AD=2806 - Q
R, =265 sl g
(d) GD =2656; and 6abc-b*=2310-}-125 =2435 -
5 Q,=0and R,=221 '
(¢) GD=2218; and 3ac®4-3b%=16174525=2142 S AD=7
o Qr=0and R;=76
(f)GD=769; and 3bcz=735 . AD=34 : Q=04
R,=34
(g) GD=343; and ¢®=343 ', AD=0 .", Q,=0and R,=0
.. The cube root of the sub-multiple is 1157
~. The CR of the original number=9256
N.B.: As above.
(5) E= :2, 840, 362, 499, 528
8 :

: 355 045, 312, 44l,

355 : 0 4
147 : : 12 120

: 7 : 0 81

This very number having already been dealt with in example 3
of this very series, in this very portion of this subject, we need
ot work it all out again. Suffice it to-say that, because, 7081 1
he cube root of this derived sub-multiple.

. The C.R, of the original number is 14162

Note: All these methods, however, fall in one way or another,
hort ot the Vedic ideal of ease and simplicity. And the general
‘ormula which is simultaneously applicable to all cases and free
rom all flaws is yet ahead. But we shall go into these matters
ater.

» AD=2
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pythagoras’ Theorem etc,

(HIRTY-SEVEN

|

vf-iern Eistorical Research has revealed—and all the modem
iegrizos of mathematics have placed on record the historical
2= that the so-called “Pythogoras’ Theorem™ was knownto the
ercizry Indizns long long before the time of Pythagoras and that,
just as glth ugh the Arabs introduced the Indian system of
rumerzls into the Western world and distinetly spoke of them as
th= “Hirgy numerals, yet, the Europzan importers thereof un-
diccerninsly dubbed them as the Arabic numerals and they are
¢l described everywhere under that designation; similarly
exacily it hes happened that, although Pythagoras intro duced his
theorem to the Western mathematical and scientific world long
long aftervards, yet that Theorem confinuss to bz known &s
Pythagoras® Theoram! ; _

This thzorem is constantly 'in requl
practical mathematical work and Is aﬁktfctwledgcg_b?nrﬂil}ﬂ 1{1:
practiczlly the real foundational 11_Il'ﬂ-rﬂ'i1u'51l¢ E"fm II%I:EI.'E i
metry including Solid Geometry, Trigonometry 'a;' o el
Spherical, Analytical Conics, Caleulus Dlﬁ'ﬂﬁ;tl o Applied.
2nd various other branches of mathematics: urz e omealal
Yet, the proof of such a basically jmportant a0

to
: & iegt SOULCES knowa
theorem as presented, straight from the E:EIFI;II expounded BY the

the scientific world, by Euclid etc-, and asi world over 13 ultra-

MOt eminent modern gec:-mr:tri::ianﬂ B g otC., 4N

Hotorious for its tedious length, :1'55 I||:1u | o
%F the time and toil entailed on It* which is mt

I ne of ;
There are several Vedic proofs, every : hown below:
Smpler than Fuclids® etc. A few of them &

sition in & vast-lot of

msy cumbrousnes

ré £
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FirsT PROOF
Here, the square AE =the square KG.
. 3 { all around 1t. 3
Their arcas are ¢, (b—a)® and 4% 1an
N respectively. -
l o %= 0®—2ab-b*-4(lab) =21 e
' : Q.E.D.
SECOND PROOF
CGonstruction

CD=AB=m; and DE=BC=n. *, ARC
and CDE are Congruent; and ACE i3
right-angled Isosceles. Now, the trapezium
ABDE =ABC+-CDE+ACE ., }mn-}h
+3mn=4}(m+n)x (m-+n)=3 m? 4+ mn +
in? 5, thf=1m®J-1n® - A%=mitdnt
Q.E.D.

N.B.: Here we have utilised the proposition that the area of
rapezium=$} the altitude x the sum of the parallel sides.

THIRD PROOF
Here, AE=BF=CG=DH=m and EB=

A HP FC-GD=HA=n
Ef Now, the square AC=the square
EG+the 4 congruent right-angled
A triangles around it ., h*+4 (3 mn)
il g —(minpPem’+2mntn? ;A= mint
gln - - Q.E.D,
FourtH Proor

The proposition to be used here is that the areas of similaf

tl:iﬂrlglts are proportional to the squares on the homologous
sides. Here, BD is | to AC

-

.. Thee triangles ABC, ABD B :
BCA are similar.

+'« As between (1) the first tWO 35'-_3:-
les and (2) the first and third onies




Py ]
vehagoray Theorey, ele.

AB* _ADB . pe o ‘s
ACH .l*":[i(: »and m& Alﬁg

. By addition, }{'(':EC‘; = i?_ig_ﬁ_{gp_h ABC

+ ABLBC'=AC* QED. ABC ™!

FIFTH Proop

This proof is from Co-ordinate G’Eﬂmﬂt[}r_
Conics and Co-ordinate Geometry and eve

. : n Trigo
their genesis from Pythagoras® Theorem, thig prﬂiﬁfﬂ;?;:;’;ﬂ];ﬂ
ﬂbjmtmnahlc_: to t]u_e modern mathematician, But, as the m-g
Sitras establish their Conics and Co-ordinate Geometry and &vr:lu
their Calculus, at a very early stage, on the basis of first prin-

ciples and not from Pythagoras’ Theorem (¥ic), no such objection
can hold good in this case.

The proposition is the one which

gives usthe distance between two points
“’\ whose co-ordinates have been given.
o *——=+  Let the points be A and B and let their
co-ordinates be (a, 0) and (0, b) res-

, pectively.

Then, BA =+/(a—0)*4(0—b)*=

Val b .\, BA*=at+b? QE.D.
Note: The Apollonius’ Theorem, Ptolemy’s Theorem and a
vast lot of other Theorems are similarly easy to solve with the
d of the Vedic Sitras. We shall not, however, go into an elabo-
ate description thereof except of the Apollonius’ Theorem just

0W but shall reserve them for a higher stage in the student's
Bludjes,
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e

\

Apollonius’ Theorem

——

Apollonius” Theorem (sie) is practically 3 g:
carollary or offshoot from P;.rthagurasf Irect and elementary

. Theorem. B
nately, its proof too has been beset with the usual ﬂa‘t:t:::fl'mljc‘:nm‘
and needless length and Jaboriousness, irksome

The usual proof is well-known and need not be reiterated here,
We need only point out the Vedic method and leave it to the
discerning reader to do all the contrasting for himself, And, after
all, that is the best way. Isn’t it?

Well, in any triangle ABC, il D be the

\ mid-point of BC, then AB*LAC -
; 2{AD®*4-BD?). Thisisthe proposition

/ §\~ which goes by the name of Apollonius’

O =+ Theorem and has now to be proved by
: us by a far simpler and easier method
g than the one employed by him.

Let AO be the perpendicular from A
on BC: let XOX’ and YOY' be the axes of co-ordinates; and
let BO, OD and OA be m,nandp respectively-

5 DB=DC=m+n

*v AB*4 AC? = (p®+m?)-(m*+4mn-+ 4n*+-p’)
=2p*+4-2m?+4-4mn--4n®

and 2 (AD?*4+-BD?) =2[(p*+n%)+ (m?42mn-t- n’)]
=2p*+2m?*-+4mn--4n® | QED
% AB-AC?=2 (AD*+DB) B2t e o Apollonius’

Note: We faintly remember to have read 2 T;fﬂr. SL. Loney;
orem on these lines in some publication

: of by means
U We are not sure. However that may b :;léli hﬂprauncient Indian
Co-ordinate Geometry was Well-kROWE ' © 0 vedic Satras:

Mathematicians and specifically finds its place
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analytical Conics

ap———

Anzlytical Conicsisa very important branch of mathematical
erudy and has a direct bearing on practical work in various
v-apches of mathematics. Itis in the fitness of things, therefore,
ot Anzlvtical Conics should find an important and predominat-
ing position for itsell in the Vedic system of mathematics as it
zoruzily doss.

A few instances relating to certain very necessary and very
jmportant points connected with Analytical Conics are therefore
civen hereunder merely by way, of illustration.

I. EQUATION TO THE STRAIGHT LINE

For finding the Equation of the straight line passing through
two points whose co-ordinates are given:
say, (9, 17) and (7, —2)-

The current method tells us to work as follows:
Take the general equation y =mx +¢-
Substituting the above values therein,
we have: 9m--c=17; and Tm+-C= -2

Solving this simultaneous equation in m and C
dm+c=17
im-+-c=—2

we have;

s 2m=19 , m=%%

Stbstituting this value of m :n either of the al;:w:: two fq?:::.m;i'
B i Qe T L R }a“.ﬂ oit
mend cin the Original General Equation (=i, 7y
¥=91 % —68}. -, Removing fractions. wl-.'; m:,.r;ia?* S
And then, by transposition, W¢ & X #)
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ethod is decidedly o0 long and cumbrous and especialy for

!
EUC]‘ a FE”}" I!'Ii'lﬂﬂl', hﬂd' w]' 5
And the Second Current Met tch uses (e formyy,

y=yi = i—:—-:%i— (x— Xy} I8 ::lqllﬂ”}f | ::umbrm.m and E‘JHFUE'LHE.
It ultimately amounts to the right thing; but it does not mae
clegr and requires several more steps of working]

But the Vedic at-sight, ﬂﬂﬁ-—ﬁ{fﬁ", mental method -!:-_:ur_ the Porg.
yartya Sittra enables us to write the answer mechanically doyy,
by a mere casual fook at the given co-ordinates. And it s at
follows: o

The General Equation to the straight line in its final form g
..X—..y=..where the co-efficients of x and y on the left hang
side and the independent on the right hand side have to be fillzg
in. The Siira tells us to do this very simply by:

(i) putting the difference of the y-co-ordinates as the x-co-

efficient and vice versa; and

(i) evaluating the independent term on that basis.

For example, in the above example, the co-ordinates are: (3,17)
and (7, —2).

(i) so our x-coefficient is 17— (—2) =19

(i) and our y-coefficient is 9— 7 =2,

Thus we have 19 — 2y as our L.H.S. straightaway,

(iii) As for the absolute term on the R.H.S., as the straight line
in question passes through the two given points, the substi-
tution of the original co-ordinates of each of the points
must give us the independent term.

S0, the substitution of the values 9 and 17 jn the L.H.S. of the
Cquation gives us 193 9— 2 17= 171 —34 = 137!

Or substituting the valyes 7 and ]
—2 there 119x7-2x
=2=1334+4=1371 And that l it

: ' iti ion and
verification 15 additional confirmation

it

But this is not a) Thers ; , :
can obtain the indenﬂnd:ftlg also a third method by which we

te is is with
the help of the ryje about 4 et SRl i

ad, j.c. 1 yam, Antyam and Madhyam, i.e. o~
he r::d ;:;:t of the meapg minus the product of the €
her adefrn o0 < 1= 9X ~2<119418~137! And this
itional confirmatjon and verification!
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g LR B
S0 1N

» '.'.:..1:5-."'11. E-':': —— ]ﬂ_’"{ — 21!-'= I]? Whi{:h

ol m e w o igw

355

A - ,h}- the claborate currtrlli f'r?'::f}lllcii tll:ﬁl?:m:m
mitanesus SHHAONS - transpositions and sul:rslilmmniq 1;[“3

-2 And all the work invelved in the Vedic method haé hnc..
sirunad, short, simple and easy! v
A oW oG iﬁﬁti‘;ﬂi‘ts ar E'i'l.':n bh':ll]w,'

e

(1E-E0I008 1‘3. Tyand L'—?. 2}

c. Ineequation 1o the straight line joining them is:
x—lby=—67

=
v

(2710 3 and (18, 9) S x=2y (by Vilokanam too)
(3118 Sand (3, 7) S X=Yy=2(by Vilokanan too)
(<1 = 7y and (3, 3) S 2x—y=1

3 Nand (5,2 S m—dy=17

&3 T and (4, —6) o 13%x—5y=§2

({17, P and (13,—§) o 1Tx—dy =253

(£) (15, 16) and (9, —3) o 19x—6y=189

%1 (2, DYand (c, d)

Sx(b—d)—y(@a—c)=bec—ad

11. TuE GESERAL EQUATION AND TWO STRAIGHT LINES

Tz= cuestion frequently arises:—When does the general equa-
ticn 10 2 straight line represent two straight lines?

Sav. 12x*—Txy— 10y* 4 13x+-45y - 35=0

Expounding the current conventional memud.,Pmﬂ_ S.L. Loney
&'-a:c-:ld-raputed present-day authoerity on the subject devotes
zbout 15 lines not of argument or of explanation but of hard

solid working in section 119, example I on page 97 of his “Ele-

=snts of Co-ordinate Geometry™, to his model solution of this
problamas follows:

-
-l
(S

131 . 45
H:rta:ll,h-:?z—,b=—lﬂ, g= 3o 2 ande=-35

2 2
. abg=2fgh—af?—bg*—ch®

45 13 T 45y
—12%(—10)K (=32 R 5 X F* g (_1)

2 -
= Iﬂ}(l;—) —{—35}(3—)
A095 1690 | 1713 7500

~4200 4 5~ 6075 + ——F = — 1875 =0
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+ The cquation represents two straight lines,

oo it [or X, we have!

Sul?t'ills Ty--13 Y _ 10y2 =45y 1-35  (Ty.|13 4.
x* 4:—?——‘:"(#"_ = 12 : “271%)

12
23y~ 43\?
S\ TH

E a7 S
-7 —5y4-5
ve X = 25-'3 L i

. The two straight lines are Ix=2y—Tand dx ~ — 5y.15

Note: The only comment possible for us to make hereoy i

that the very magnitude of the numbers involved in the fraction,
their multiplications, subtractions etc., ad infinitum is api:.amné
and panic-striking and that it is such asinine hurdnnqh,r_-.aﬁng
labour that is responsible for, not as a justification for, but, s
any rate, an extenuation for the inveterate hatred which many
youngsters develop for mathematics as such and for their mathe.

matics-teachers ag welll

We make no reflection on Prof. Loney. Heis perhaps one of
the best, the finest and the most painstaking of mathematicians
and s very highly esteemed by us as such and for his beautiful
publications which are standard authorities on the various sub-
Jects which they deal with. It is the system that we are blamin 5
or, at any rate, comparing and contrasting with the Vedic system.
Now, the Vedic method herein is one by which we can jmme-
gﬁlﬁ* I:Ppg;.hn Ordhva Sitra the Adyam Adyena Sitra and
but regﬁj}iarm?:sa o Sr;m and by merely looking at the frightful
arithmetic, write diqua fatic before us, ’_"‘u'ﬂdﬂ}' by mere mental
“Yes, and the strai 1.:11 the answer to this question and sayi—
' 1ght lines H.l'EI:"l:t_'-—Ejr.'_'? —0 and 4:':_1_5},_5#&”

How exactly we do th;
this b s : .
explain presently, ¥ mental arithmetic, we proceed to

Tue Vepic Mgr
(1} By the Ordltvg Tiryak HOD

the = -

th:: I diifm . Sthapang  ang ii+§ff§

cxpltingd 1 < o7 Sitras a5 1R Ty oAt I =
I sone of the carfi- ¥ Vit AL i A

have mentally ; 12x2 4+ Ty — 10y __*{3;.-,-2:6



Analytical Conics

(x-+5y) and we find 7 and— 5 to be
pwo factors. We thus get (3x—2y +7)=0

the two straight lines represented by
that is all there is to jit.

thnndr (4x+5y—5)=0 as
© EIven equation. And

THE HYPERBOLAS AND THE ASYMPTOTES

Dealing with the same principle and i
: : 1 - adopting th
cedure in cennection with the Hyperb ola, lhi; an njuiuﬁmlz pf:crp,
hola and lhﬂ.hsympmtus, in articles 324 and 325 on pagesjrngi’:
and 294 of his “Elements of Co-ordinate Geometry”, Prof, 5.L
Loney devotes 27--14 (=41) lines in all to the problem and con-
cludes by saying:

“Ag 3x%— OSxy—2y*5x+1ly+c=0 is the equation of the

Asymptotes,

s I=2 -3—1-23_ : %(:E*E_)__ 3 (%)’__{_1} (_g_)z
(3
Se=—12

5, The Equation to the Asymptotes is 3x®—Sxy—2y*+5x
+1ly—12=0

And consequently the Equation to the Conjugate Hyperbola is
3xi— Sxy— 2yt +-5x+11y—16=0".

Well, all this is not so terrific-looking, because of the very
simple fact that all the working according to Art. 116 on pages
95 etc. has been taken for granted and done “out of Court” or
in private, so to speak. But evcn then the substitution of the
values of a, b, ¢, f, g, and hin the Discriminant to the General
Equation and so on is, from the Vedic standpoint, wholly super-
erogatory toil and therefore to be avoided. -

By the Vedic method, however, we Use the same Lopana Stha-

pana, the Urdhva Tiryak and the Advam Adyena Siirds; we first
get mentally 3x-+y and x— 2y 3X+Y ‘:4

and then —4 and 3 as the x—2y+3 S
only possibilities in the case, 3xd—Sxy— 2y +3x+1ly=12

and as this gives us —12 in
* duct=0 as the Equation to the

the product, we get this pro :
ﬁ._g:,,rmpmtﬁﬂ: and, as the Conjugate H:,rperbu:-l:l 15 at the samc
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distance in the opposite direction from ﬂ}c Asymplotes, we put
down the same equation with only— 16 instead of —§ a5 1, Ay
quired Equation to the Conjugate Hyperbola and have noy got
to bother about the complexities of the Dzscrum:}ams, the ineyj;.
able substitutions and all the rest of it_l And that is all.
A few more illustrative instances will not be out of place:
(1) 8x*+10xy— Jyt=2xtdy—2=0
& (2x+3y)(dx—y)— 2x44y—2=0
dx— y+1
2x+3y—1
Bx2+10xy— 3y2— 2x4+4y—1=0 +
s, The Equation to the Asymptotes is 8x*+10xy—3y*—2y
+dy=1; and the Equation to the Conjugate Hyperbola jg
8x24-10xy— 3y*— 2x--dy =0
(2) yi—xy—2x2—Sy+x—6=0 1, y+ x—2
y—2x—-3

yi—xy—2x%4-x— Sy+6=0
. The Asymptotes are (y+x—2) (y—2x—3)=0 ]

And the Conjugate Hyperbola is y*—xy— 2x*+-x— Sy+18=0
(3) 55x*— 120xy+-20y24-64x— 48y =0 -, 11x— 2y+4

5x— 10y+4
S 35x3— 120xy-+ 20y2+ 64x — 48y - 16=0

.~ This is the Equation to the Asymptotes: and the Equation
to the Conjugate Hyperbola is 55xf— 120xy+20y2 L 6d4x —

4
32=0 i
(4) 12x*—23xy+ 10y2— 25x+4+26y— 14 . 4x— Sy—3
Ix—2y—4 |
The Asymptotes are: 12x2— 23xy-L 10y®— 25x-+-26y
And the Conjugate Hyperbola i e

12x%— 23xy- 10y? — 25x-L- 26y
38=0
Xy =6+ 14x4-Sy-44 L 2x—3y-+4 i
Ix+2y+1 ]
. Two straight lines, . Independent term=4

(3) 6x*




FORTY

Miscellaneous Matters

Thv%re are also various subjects of a miscellaneous cha
which are of great practical i i

e of practical interest not only to mathematicians
and statisticians as such but also to ordinary people in the ordi-
nary course of their various businesses etc., to which the modern
system of accounting etc., does scant justice and in which the
Vedic 1.5'mrm' can be very helpful to them. We do not propose to
deal with them now, except to name a few of them:

(1) Subtractions;

(2) Mixed additions and subtractions,

(3) Compound additions and subtractions;
(4) Additions of Vulgar Fractions efc.;

(5) Comparison of Fractions; ¢
(6) Simple and compound practice without taking Aliquot parts
etc.;

(T) Decimal operations in all decimal work;
(8) Ratios, Proportions, Percentages, AVETages etc.;
(9) Interest, Annuities, Discount etec.;
(10) The Centre of Gravity of Hemispheres etc.;
(11) Transformation of Equations; and
(12) Dynamics, Statistics, Hydrostatics, Pneumatics etc., Applied
Mechanics etc.

N.B.: There are some other subjects, ROWEVET of an important

character which need detailed attention but which owing to their
ge we do not now propose

being more appropriate at a later sta .
PRCOR in view of their practi-

to deal with but which, at the same time, ;
rbingly intercsting character do

deal with them, therefore, briefly

hereunder.
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SoLIDS, TRIGONOMETRY, ASTRONOMY Ere.

In Solid Geometry, Planc Trigonometry, Spherical e
metry and Astronomy too, 1:h:;'.1'ﬂ arc similarly hl{gc: Magses
Vedic material calculated to lighten the m&t]'m'n‘-mnm Studengy
burden. We shall not, however, go here and now into 5 detaileg
disquisition on such matters I:_mt shall merely name a felw of the
important and most fntercf:tlng headings under which these
subjects may be usefully studied: o .
(1) The Trigonometrical Functions and their mter-re!zl.tmnah[m_
(2) E:-:E and chords of circles, angles and sines of angles eic.;
(3) The converse, i.e. sines of angles, the angles themselyes,
chords and arcs of circles ete. ;
(4) Determinants and their use in the Theory of Equations,
Trigonometry, Conics, Calculus etc.:
(3) Solids and why there can be only five regular Polyhedrong,
etc.;
(6) The Earth’s daily Rotation on its own axis and her annual
relation around the Sun;
(7) Eclipses:
(8) The Theorem in Spherical Triangles relating to the product
of the sines of the Altsrnate Segments, i.e. about
Sin BD  Sin CE EH—AF-=I s
SinDC  SinEA Sijnpp— | an
() The value of m, i.e. the ratio of the circumference of a circle
to its Diameter.

N.B.: mﬂ. last item, however, is one which we would like to
explain in slightly greater details

Actually, the valye of -Iil;- 15

§iub metre and s
described in anea

given in the well-known Anu-

couched in the Alphabetical Code-Language
rlier chapter -

Tﬁﬁ‘rﬁmqgmﬂ-ﬂg‘l"ﬁﬁﬁzﬁﬂﬁw I

ed thsit 1t can bear three different meaninngE
Priate. The first js a hymn to the Lord Sri

is similarly a hymn in praise of the Lord Shri

Sankara; and the third js 4n evaluation of -% to 32 places
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of ]}r:i:il‘ﬂﬂIEE with a “Self-contained master-key™ f; )
i evaluation to any number of decimal places! N BN

As the student apd especially the nﬂn-Sﬂnskﬁiknmﬁ.-

s not likely to be interested in and will find great d?!liigitlmm'“
undﬂfﬂ[ﬂﬂdiﬂg the puns and other literary beauties of ﬂf .k
in respect of the first two meanings but will naturall erI?ztm
rested in and can easily follow the third meaning way ive ]m:j-
that third one here: ' % ’

n _J3141592653589793

10 2384626433832792...
on which. on understanding it, Dr. V.P. Dalal of the Heidelburg
University, Germany felt impelled—as a2 mathematician and
physicist and also as a Sanskrit scholar—to put on record his
comment as follows:

wIt shows how deeply the ancient Indian mathematicians
penetrated, in the subtlety of their calculations, even when
the Greeks had no numerals above 1000 and their multiplica-
tions were so very complex, which they performed with the
help of the counting frame by adding so many times the
multiplier! 7% 5 could be done by adding 7 on the counting
frame 5 times!” efc.
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Jagadguru Swami
Sri Bharati Krsna

Tirthaji Maharaja :

Thise pDF-‘-F"ﬁH-ﬂH and monumental work on Vedic Mathematics
1y L-“,Tnldﬂ n gl"i{-.!W hainﬂd of approach. It relates to the truth of

NUMDETS” “'m nagniiudes equally appilcam? to all sciences and
arts.

The book brings to light how great and true k}nuwiedge s born
of intuition, quite different from modern Western method. The
ancient Indian methcrr.l and its secret tec:hmques are examined
and shown to be capable of solving various problems of |
mathematics. The universe we live in has a basic mathematical
structure nbeyin? the rules of mathematical measures and relations.
All the subjects in mathematics—Multiplication, Division,
Factorization, Equations, Calculus, Analytical Conics, etc.—are
dealt within fc:rtychapiers vividly working out all problems, inthe
easiest ever method discovered so far.

The volume, more a ‘magic’, is the result of intuitional visualiza-
tion of fundamental mathematical truths born after eight years of
highly concentrated endeavour of Jagadguru Sri Bharati Krsna
Tirtha.

Throughout the book efforis have J'Je.ﬂ.ﬂn made to solve the probiems
in a short time and in short space aiso. [ . . one can see that the formulae
given by the author from Vedas are veqs interesting and encourage 8

young mind for learning mathematics as It will not be a bug-i:'ear to him.

Mathematics Today o 5\C. SHaam,
September, 1986 Ex-Head of the Qepartment
of Ma{hema!ms

< M

. {

MOTILAL BANARSIDASS PUBLISHERS PRIVATE LIM

' R

ISBN: 81-208-0163-6 (Cloth) ff >
1
|

ISBN, 81-208-0164-4 (Paper)




	Blank Page



